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EXECUTIVE SUMMARY
The mobile industry through Next Generation Mobile Network’s (NGMN), Green Future 
Networks programme is working together to increase network energy efficiency (EE). This 
publication, outlines and prioritises the various options explored within the third phase 
of the Green Future Networks programme. The previous publication addressed short 
term solutions deployed by mobile network operators (MNOs) to address a challenging 
energy landscape. By contrast, this report further expands on the potential technologies 
that could pave the way for a network EE roadmap to address upcoming environmental 
and economic challenges faced by MNOs, with each respective potential solution being 
mapped to a time-horizon indication for its potential future implementation. 
 
First, being able to measure Radio Access Network (RAN) EE is an important part of the 
Process. There are two approaches explored for assessing Base Station (BS) equipment 
in the lab; the static measurement procedure for power consumption and the dynamic 
measurement procedure for EE. Depending on the context, each has their place when 
testing today’s modern BS equipment. However, a BS can be used in many different 
configurations, purposes and contexts.  
 
In addition, to support network EE optimisation, Artificial Intelligence (AI) could be a 
key tool to provide Energy Consumption (EC) estimation and prediction while limiting 
the amount of data collected and transferred throughout the network. This report 
recommends standards organisations to define methodologies to transfer and update 
AI models at the nodes where network configuration and parameters are controlled. In 
this context, with the increasing size of AI models, we advocate the need for solutions 
able to adjust the model complexity to minimise the EC that arises from: model training, 
transmission and execution. 
 
We also highlight that, soon, MNOs may seek to integrate novel hardware and software 
mechanisms to support AI-based network EE modelling and optimisation. At the 
software level, integrating new intelligent solutions could allow the network to reduce 
EC by adjusting the available network capacity to the actual traffic load at each given 
point in time. In indoor deployments, a new energy saving technology is proposed to 
manage the state of each RU all belonging to a given cell independently to dynamically 
switch off the Power Amplifier (PA) of any RUs that do not harbour user connection 
or data transmission at a given point of time. Trials have highlighted that this solution 
achieves an energy saving gain of 20% relative to an always-on network deployment. 
Where switching off radio components is not possible, due to non-negligible load, this 
report shows that a RU implementing an intelligent resource allocation that decreases 
the transmit power by limiting the transmission spectral efficiency could lead up to 30% 
reduction in load-dependent EC at the RU, without impacting users’ Quality of Service 
(QoS). We recommend standards organisations to define methodologies to coordinate 
properly RUs tasked with implementing distinct and potentially competing energy saving 
mechanisms.  
 
Further EE gains could be realised through RAN solutions that implement different levels 
of coordination to achieve a more efficient usage of network resources. More specifically, 
this publication highlights trials related to a novel network optimisation approach that, 
leveraging heterogeneous QoS requirements in the service area, results in up to 18% of 
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reduction in the average RAN EC. In addition, this report presents network level solutions 
where multi-carrier coordinated scheduling and spectrum sharing are respectively 
combined with cell discontinuous transmissions and carrier shutdown to lead up to 
26%, EE gain at the RUs.  
 
In addition to coordination mechanisms implemented through new software functionalities, 
MNOs are encouraged to share part of their wireless infrastructure to reduce component 
duplications and jointly utilise network resources through RAN sharing to limit EC and 
carbon emissions. 
 
As reported in the previous publication of the Green Future Networks Programme  [1] ,  
the usage of renewable energy sources is a crucial solution for reducing carbon emissions 
and limiting the mobile network dependency on electrical grids. This report also highlights 
the need for solutions to jointly dimension the power supply and network communication 
resources. We recommend standards organisations to enhance interworking between 
mobile networks and the energy suppliers to effectively reduce costs and the respective 
carbon footprints, while maintaining service availability. 
 
Virtualised and disaggregated mobile networks speed up network deployment and 
management which can improve operational efficiency. In this context, this publication 
overviews the current state of the O-RAN ecosystem and the actions envisaged to 
accelerate the deployment of energy efficient networks. 

The report highlights practical applications of AI and its related challenges within mobile 
networks. We show that AI algorithms could help to make better energy saving decisions, 
such as controlling the energy saving policy thresholds, by predicting future EE and load 
states as well as by identifying low-EE sites. 
 
NGMN advises that MNOs carefully assess the solutions to enhance network energy 
efficiency presented in this publication and analyse the prioritised list of available 
strategies presented in the Conclusion section.
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01 INTRODUCTION  
NGMN’s Green Future Networks Programme has the ambition to lead the telecoms 
industry towards energy efficient operations and a sustainable economy. Following the 
previous publication presenting the collective MNO response to the energy price challenges 
confronting the telecoms industry  [1] , in this publication we outline and prioritise the 
various options available to build an ambitious EE roadmap. In particular, EE approaches 
are organised into three broad categories (and time-horizons), and for each solution, 
information is provided – based on data from live networks and/or simulations - on the 
size and scope of the potential energy savings (see Section 9).  
 
These solutions are presented in detail in this publication as follows: Section 2 presents 
measurement methods and related standards that should be used by MNOs to properly 
measure EC and EE. Section 3 provides an overview of 3GPP New Radio (NR) efforts to 
enhance network EE and highlights future standardisation challenges. Section 4 describes 
solutions that could improve the EE of the RUs, which account for the 80% of the BS 
power consumption. Section 5 introduces mechanisms that could enhance the RAN EE by 
optimising network resource utilisation and leveraging variations in traffic demand over 
time and space, without compromising users' QoS. Section 6 presents the challenges of 
a potential new ecosystem where MNOs and energy suppliers collaborate to meet both 
environmental and economic sustainability targets, harnessing renewable energy sources, 
energy storage facilities, and real-time information exchange. Section 7 outlines prospects 
for boosting EE in virtualised and disaggregated networks, emphasizing key priorities for 
Open RAN deployment. Section 8 highlights the advantages and challenges related to 
the integration of Artificial Intelligence (AI) and Machine Learning (ML) to achieve greater 
net EE in telecoms networks. Finally, Section 9 handles the most recent key learnings 
from NGMN’s Green Future Networks Programme, highlighting the potential EE gains 
of the solutions presented in this white paper.



7

02 MEASURING RAN 
ENERGY EFFICIENCY  
Being able to measure energy efficiency in the Radio Access Network (RAN) is an 
important part of the process of improving it. Depending on the purpose, different 
types of measurement methods are used by MNOs. In the procurement process, it 
is common to use lab tests to measure the EC and efficiency of the equipment to be 
used in the network. During network operation, different performance metrics can be 
monitored to see how the network EC and network EE evolve over time.  In recent years, 
networks have evolved to become both more advanced and complex. 5G-NR has been 
introduced, new types of equipment such as Active Antenna Unites (AAUs) capable of 
massive Multiple Input Multiple Output (MIMO) are being widely deployed, and different 
features for performance enhancement, network optimisation, and energy saving are 
becoming more common. This obviously impacts network EC and network EE, and also 
affects how EC and EE should be measured in an accurate way. This section will highlight 
some of these impacts, and related measurement aspects and standards. 

 
2.1. EQUIPMENT LEVEL MEASUREMENTS 
2.1.1. STATIC AND DYNAMIC MEASUREMENTS 

 
There are two approaches for testing BS equipment in the lab; one for measuring the 
power consumption in a static procedure, and the other for measuring the EE in a 
dynamic procedure. In the static measurement procedure, a static Physical Resource 
Block (PRB) load is put on the equipment under test and the resulting power consumption 
is measured. This is repeated for three load levels (low, medium and high – the high 
load reflects a typical traffic load in a busy hour), and by post-processing the average 
power consumption as well as the daily energy consumption of the equipment under 
test can be calculated. The main advantages of this test are its simplicity for setting up 
and conducting the test, but it has limitations in its ability to reflect the behaviour of a 
BS in a real-world network operation. For example, the effects of varying radio channel 
environments and some traffic dependent EE features are not captured. Static tests are 
widely used by MNOs, the most well-known standard is provided by ETSI   [2]  . ATIS, CCSA 
and ITU-T have similar standards. 

To capture in a more dynamic manner the effects of different EE features, functionalities 
and radio network characteristics, a so-called dynamic measurement procedure can 
be used. In this test, a User Equipment (UE) emulator is used to generate traffic from 
several UEs at different locations to load the BS under test (see Figure 1), and the BS is 
also enabled to use all possible RAN features and functionalities. Time and even space 
variations and burstiness of the data traffic are captured, which allows performance 
enhancing and energy saving features to take effect accordingly. Power consumption is 
measured during the test, but also the delivered performance in terms of data volume, 
which allows to calculate both energy consumption as well as EE of the BS equipment. 
Hence, this test provides information on the dynamic behaviour of the BS equipment 
in operation but requires on the other hand a more advanced measurement set-up in 
the lab, e.g., UE as well as channel and fading emulators. ETSI has recently released new 
versions of the dynamic measurement standards for LTE  [3]  and NR  [4]  (conducted tests 
only), respectively, and also CCSA and ITU-T  [5]  are in the process of defining/updating 
dynamic BS measurement standards.  
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For today’s modern BS equipment, which operate in more complex mobile network 
environments with many performance enhancing and optimising features and functionalities, 
both static tests and dynamic tests have their place. They are not mutually exclusive but 
offer a wide array of laboratory measurement methods depending on the needs and 
context. However, it should be emphasized that these lab tests only provide snapshots, 
while the most reliable and accurate measurements of energy consumption and energy 
efficiency are obtained at network level, which will be discussed in Section 2.2. 

2.1.2. MEASUREMENT ON ACTIVE ANTENNA UNITS 

 
When measuring power and energy consumption of RUs, standards  [2]  mandate that 
the RUs should be configured to have the same output power. This should be verified 
by measuring the output power at the test port. For Remote Radio Units (RRUs), this 
typically means the antenna connectors of the RRU, i.e., before the passive antenna (see 
Figure 2, left). Once the RRUs are tuned following this guideline, their power consumption 
can be measured. Thereafter, EC  [2]  and power efficiency  [5]  values can also be derived. 
Since the assumption is that the RRUs under test can be connected to the same passive 
antenna, fair tests are guaranteed, as in this case, the same output power at the RRU 
results in the same effective isotropic radiated power (EIRP)1 from the antenna. 

Figure 2. Test ports – antenna connectors of the RRU  [2] ,  [6]  ] (left), and the RIB of the AAU  [2] ,  [7]  (right).

1 EIRP [dBm] = TX power [dBm] + Antenna Gain [dB].
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Figure 1. Illustration of traffic model in dynamic test  [3] ,  [4] . 
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However, since AAUs typically have their passive antenna arrays integrated together with 
the radio chains in one single unit, the same procedure to measure power and energy 
consumption used for RRUs cannot be applied. The reason is that different AAUs may 
have different antenna array capabilities, e.g., one has more antenna elements than the 
other, and/or the directivity of their antenna elements differs. If we would test them using 
the procedure described above, i.e., configuring them to have the same output power, 
the different antenna array capabilities of the AAUs would result in different EIRPs, i.e., 
different operating points. Therefore, for AAUs, the test port is defined as the radiated 
interface boundary (RIB), i.e., after the antenna (see Figure 2).  
 
Hence, for AAUs an EIRP-based test (see Figure 3) should be used when measuring 
power and energy consumption. Such a test is developed by 3rd generation partnership 
project (3GPP)  [7]  and adopted by ETSI for EC measurements  [2] . It is then important 
that the AAUs to be measured are tuned to provide the same EIRP in order to 
make sure that the measurements are carried out at the same operational point. 
 
 

 
 

2.2. NETWORK LEVEL MEASUREMENTS
 
The previous subsection focused on BS equipment measurements in the lab, however, 
the most reliable and accurate energy efficiency Key Performance Indicators (KPIs) can 
be obtained at network level. A mobile network can be built in many different ways, and 
at network level the whole dynamism including interference from other cells, real world 
radio channel characteristics, deployment and operation aspects, as well as RAN features 
and functionalities come into play and affect the network EC and EE.  

As no two networks are the same, it is difficult to compare network EE of different networks. 
However, by monitoring different performance metrics and EC, it is possible for MNOs to 
see how network EC and network EE evolve over time in their respective networks. For 
a long time, delivered data volume has been the main performance metric to consider 
when assessing network EE. However, with the roll-out of 5G new services and use cases 
have been introduced. For these, there might be other performance metrics that are of 
importance, e.g. number of connections, latency, and/or reliability. 3GPP has defined 
EE metrics based on these  [8] ,  [9] , while ETSI  [10]  and ITU-T  [11]  define methodology 
for assessing network EE on a network level using these metrics. An update of these 
standards is ongoing, where e.g., EC of Virtualised Network Functions (VNFs) is considered.  
It is recommended that MNOs use metrics and methods in these standards to monitor 
and assess how their network energy efficiency evolves over time. In addition, one key 
challenge is to provide EC-related information to monitor, control and optimise the 
network without increasing the overall EC. AI could be a key tool to provide EC estimation 
and prediction in the most efficient manner.

Figure 3. EIRP-based AAU test.
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03 OVERVIEW 
OF 3GPP RADIO 
ACCESS NETWORK 
ENERGY EFFICIENCY 
ACTIVITIES
In the context of mobile communications, the EE of the mobile terminals has always been 
an important design criterion. This is mainly driven by the requirement for efficient usage 
of the handset battery. However, the EC at the network side is becoming increasingly 
important due to reasons of economic sustainability, especially regarding the EE of the 
RAN since the RAN is the most hungry energy consumer in a mobile network  [12] . 
 
Consequently, the NR standardisation activities in 3GPP targeted the so-called Network 
Energy Saving (NES) functionalities in Release 18 that improve the EE at the BS side as 
depicted in Figure 4. Most of the NES functions aim at reducing the BS power consumption 
for low or zero carried load conditions. The ideal BS power profile would then be a 
power consumption very close to zero Watt for zero carrier load, which is conceptually 
represented with the dashed green line in Figure 4. Note, however, that this ideal/desired 
power profile would also require many hardware optimisations that fall outside of the 
3GPP standardisation work. 

Figure 4. NES enhancements towards improving power vs load BS profile. 
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The 3GPP NR standardisation work on NES in Release 18 is summarised in  [13] , where 
companies have also quantified the achievable power consumption gains of their 
proposed NES functionalities versus the impact on the service quality, e.g., uplink or 
downlink throughput, access delay, etc. 

Finally, a few promising functionalities from the different proposed NES functions in  [13]  
were selected for the standardisation in Release 18, as briefly described in the following 
section. 
 

3.1. NETWORK ENERGY SAVING TECHNIQUES IN 
3GPP NR 
 
3GPP NR initiated its efforts in energy-saving with a focus on UE power saving in Release 
16, spanning from 2019 to 2020  [14] . As indicated in Figure 5, this pursuit continued 
through Release 17  [15] , and by the advent of Release 18, the focus of discourse changed 
towards NES strategies. The initial phase of Release 18 involved studying and exploring 
diverse techniques applicable to the RAN for energy reduction on the network side  [13] .

Figure 5. 3GPP standardisation timeline since the start of UE power saving. 

5G
Release 15

5G
Release 16

5G
Release 17

5G Advanced
Release 18

5G Advanced
Release 19
(planned)

UE Power
Saving -

enhancements

Network Energy
Saving

Network Energy
Saving

To be continued

UE Power
Saving



12

Currently, networks' EC does not fully align proportionally with the traffic load. This 
indicates a high energy-saving potential during low-traffic periods (e.g., nights) without 
significantly impacting user experience. The NES techniques studied by 3GPP NR and 
documented in  [13]  fall into four categories: Time, Frequency, Spatial, and Power domain 
techniques, each targeting NES in the respective domain. 
 
 The time domain techniques enable component-level shutdown during inactive 

periods, with no transmission or reception by the BS. Multiple sleep (inactivity) levels 
were defined, as indicated in Figure 6, with deeper sleep levels involving larger groups 
of components. Crucially, the depth of sleep modes correlates with the extent of 
component deactivation. However, a trade-off exists, as deeper sleep modes entail 
longer delays in transitioning away from that sleep mode. With the current configuration 
deployed in 5G NR due to periodically broadcasting System Information, the extended 
transition time of 25 ms will prevent the Next Generation Node B (gNB)2 from going 
to deep sleep. 

 The frequency domain techniques explored the adaptation of frequency resources 
in general, including the shutdown of secondary cells/carriers (SCell) in multi-carrier 
operation and adjustments in bandwidth segments.  

 The spatial domain techniques involved dynamically deactivating spatial elements, 
i.e., antenna ports/elements and/or TX/RX points (TRPs) in multi-TRP operation.  

 The power domain techniques delved into dynamic adaptation of downlink (DL) 
transmit power and energy-efficient DL transmission through novel approaches for 
peak-to-average power ratio reduction, pre-distortion, post-distortion, PA power bias 
adaptation etc. 

Figure 6. gNB energy saving states. 
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2 A BS in the 3GPP NR terminology.
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Among the numerous techniques considered during the NES study item, the Release 18 
work item introduced the following new features:  

Channel State Information (CSI) enhancements for adaptations in spatial and 
power domains, introducing a new CSI reporting framework, which enables the UE to 
report N>=1 CSI sub-report(s) in one reporting instance, each sub-report corresponds to 
multiple TX shutdown patterns and/or DL power reduction. This enhanced CSI reporting 
enables the gNB to perform more dynamic adaptation in the spatial and/or power 
domains for energy saving. 

Cell Discontinuous Transmission and Discontinuous Reception (Cell DTX/DRX), 
involves a technique where the gNB can enter a sleep state during periods of inactivity  [11] . 
However, specific signals, such as Synchronization Signal Block (SSB), System Information 
Block (SIB)-1, paging, and others, need to be periodically transmitted regardless of the 
UEs presence in the cell, which limits the ability to enter into sleep modes.  To facilitate 
reducing gNB activity time, Release 18 has introduced features to enable the alignment 
between Cell DTX/DRX and UE C-DRX Connected Mode, such that control channels/signals 
are not expected to be received/transmitted on the corresponding cell by a given UE.  
 
SSB-less SCell is extended from the intra-band contiguous FR1 co-located scenario 
(supported in Release-15) to inter-band FR1 co-located scenario. By omitting the SSB 
transmission, the energy cost in SCell can be reduced. The scenarios and working conditions 
for inter-band SSB-less SCell, and how to measure and get essential information for a 
SCell are all specified. 
 
A new barring bit, optionally present in SIB1, was introduced in Release 18 to allow 
only UEs capable of cell DTX/DRX to access a cell that has enabled this technique, thus 
preventing legacy UEs camping on cells adopting the Release-18 NES techniques. 
 
Finally, Release 18 has introduced enhancements on Conditional Handover (CHO) 
procedure for NES cell(s) to handover a UE to other cells as fast as possible if the 
source cell enters NES mode. 
 
The above Release 18 techniques provide more flexibility for the gNB to realise power-
saving gains. When these techniques are applied, the BS needs to make appropriate 
decisions based on feedback from the UE and the network KPIs to strike an appropriate 
balance of user experience and network energy saving. 
 
In this context, AI/ML algorithms may be used to optimise network energy-saving decisions 
by leveraging the data collected in the RAN to address inaccurate cell load prediction, 
individual gNB efficiency, and performance trade-offs. More specifically, AI/ML algorithms 
can infer future energy saving opportunity or gNB load to enhance decision-making and 
balance the trade-off between network performance and energy saving.  

In 3GPP Release 18, dynamic adaptations of transmission power and antennas stand 
out as the most effective techniques for improving the EE of BS transmissions. These 
techniques can achieve RU energy savings of 15-30% under low-to-medium cell load levels  
[16] . When considering daily average load, the combined use of these techniques offers 
the optimal balance between energy savings and throughput impact. By implementing 
careful design and mitigation strategies, it is possible to completely avoid any impact 
on user throughput. 
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It is recognised that Release 18 focused primarily on Radio Resource Control (RRC) 
Connected UEs, user-specific signals and channels, while enhancements related to the UEs 
in RRC Idle/Inactive state were not considered. Further improvements in network energy 
saving are expected to continue in 3GPP studies. The Release 19 covers the procedures 
and signalling methods to support on-demand SSB secondary cell operation for UEs 
in connected mode configured with intra-band and inter-band carrier aggregation. In 
addition to this, 3GPP will work on on-demand SIB-1 for UEs in idle/inactive mode and 
common signal/channel transmissions adaptation.

3.2. FUTURE OPTIMISATIONS IN RAN BEYOND 3GPP 
STANDARDISATION ACTIVITIES 
 
3GPP agreed in Release 18 not to alter the regular transmission of common signals by the 
gNB, which limits the potential gain in EE since the gNB cannot enter deeper sleep modes 
and has to wake up periodically to transmit system information. One viable optimisation 
strategy could be to increase the periodicity of broadcasting system information. By doing 
so, the gNB would have extended idle periods, enabling it to enter longer sleep modes 
and efficiently wake up to transmit the essential common signals. This adjustment could 
enhance energy-saving capabilities in the network. 

As an illustrative example, the impact of the periodicity of SSB transmission is presented 
in Figure 7. With an increase in SSB periodicity, there is a potential to enter deeper sleep 
modes, showcasing the correlation between transmission intervals and the achievable 
level of energy-saving modes. This method has the potential to deliver notable energy 
saving gains  [15] . 

Figure 7. Normalised EC of a gNB in respect to EC of deep sleep mode in low load applying sleep modes. 

An alternative approach to address this challenge is to transmit SSB or SIB-1 on demand. 
In this method, UEs could send a Wake-Up Signal (WUS) to prompt the transmission 
of SSB or SIB-1 when needed. This mechanism empowers the gNB to enter a more 
profound sleep mode, leading to energy savings. By relying on demand-driven signalling, 
the network can strategically manage the transmission of SSB/SIB-1, optimising EE  [15] . 
In addition, AI could be used to estimate and predict EC and KPIs related to users’ QoS, 
thus supporting network optimisation with a limited overhead, without the need to 
continuously measure and share collected measurements throughout the network. To 
achieve this, it would be necessary to define methodologies to transfer and update AI 
models together with the required input at the nodes where network configuration and 
parameters are controlled. From the standpoint of EC, these domains could significantly 
influence energy usage.
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04 RADIO UNIT 
ENERGY EFFICIENCY 
IMPROVEMENTS  
Since the RAN accounts for the majority of electricity consumption in the telecoms network, 
its EE is an unremitting subject to deal in addressing the environment challenge. This 
section describes solutions to improve EE of RUs, which are responsible, by far, for the 
largest share of the power consumption in each BS site.  

4.1. PASSIVE ANTENNA EFFICIENCY OPTIMISATION 
Antennas have a critical role in networks of connecting the BS site equipment with the 
end user devices. The efficiency of antennas is fundamental to both the performance 
and the energy efficiency of the RAN. 
 
In the communication process between the BS and user devices energy is lost. Essentially, 
there are three phases of energy losses, which all impact the overall network EE: energy 
losses inside BS antennas, energy losses from antenna radiation leaking outside the 
coverage area, and energy losses from sub-optimal alignment of the projection direction 
of BS antennas. High efficiency BS antennas aim to minimise these losses. 
 
Improving the end-to-end efficiency of antennae, and defining related antenna efficiency 
evaluation metrics, will support MNOs to select antennas that enable the highest network 
EE. Indeed, based on field trials and lab tests conducted in 2022 by NGMN Partner 
Huawei together with a large European MNO, legacy antennae already deployed have a 
large margin of improvement considering against the latest antenna technologies, which 
can improve Radio Frequency (RF) efficiency, coverage efficiency, and alignment 
efficiency (see Figure 8). The potential gains from these three improvement axes are 
independent and complementary: actual solutions can focus on one or several of them.

Figure 8. Reducing BS EC by improving end to end antenna efficiency3. 
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3 NOTE: The study excluded improving the alignment of the antenna hence why the figure indicates an    
  unknown number – XX%.
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RF efficiency refers to the proportion of RF energy provided from a RU to an antenna, 
that gets converted by the antenna into energy radiated into the air. Increasing the RF 
efficiency of an antenna reduces the power required from the radio unit, to achieve the 
same total radiated power, while at the same time improving the uplink performance 
as it also increases the useful uplink signal strength at the receiver side. 
 
Coverage efficiency refers to the proportion of energy radiated in the useful coverage 
area, to the total radiated energy 4. Ideally, radiated energy should be focused in the 
sector required for coverage, while minimising the radiation in unwanted directions such 
as towards adjacent sectors, causing interference that degrades network performance, 
and towards the sky causing energy waste (see Figure 9).

Figure 9. 2D antenna pattern, showing effective energy projection and unwanted projections.

Increasing coverage efficiency results in both BS site energy savings, by limiting waste 
radiated energy, and network performance improvements, by reducing interference. 
 
Alignment efficiency reflects the favourability of the radiation projection direction of 
the BS antenna: For the best network performance, the projection directions of BS 
antennas need to be carefully optimised, to maximise coverage and reduce interference. 
Identification of antenna alignment directions, both horizontally and vertically, is typically 
handled as part of network planning and optimisation. 
 
There are several reasons why antennas in real networks might point in wrong directions, 
such as installation errors, and changes in network topology since original site installations, 
resulting in antennas overlapping and interfering in their coverage. Moreover, dynamic 
network conditions, such as user locations shifting over time would require different 
orientations of antennas for best network performance. 
 
An antenna with high alignment efficiency, enables the antenna orientation to be remotely 
controlled, which is much faster and cheaper as it does not require the manpower and 
equipment needed at BS sites for manual adjustments. Remote Azimuth Steering (RAS) 
requires two-dimensional adjustment capabilities, both vertical and horizontal. To 
maximise the network optimisation potential, both the horizontal range and the vertical 
range should be large enough to cover the typical adjustment cases, for example 20 
degrees vertically and 60 degrees horizontally.  
 
Antennae with remote control for both tilt and azimuth enable efficient AI-based network 
optimisation. Realising this vision using classic optimisation tools is challenging due to 1) 
the large number of parameters to control in a network composed by thousands of BS, 

4 This metric is studied in the current BASTA project and will be presented in its next publication.
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where each individual cell’s performance depends on the configuration of neighbouring 
BS and 2) it is not possible to clearly define mathematically a straightforward relation 
between the tunable parameters and the global optimisation goal. Therefore, stochastic 
optimisation can be efficiently used to improve network performance by tuning RF 
parameters  [17] . The numerical results shown in Figure 10 shows the improvement 
achievable in a 5G network composed by 308 cells using the so called zeroth order (ZO) 
stochastic optimisation. The performance of ZO is compared with those provided by 
deploying a Tabu Search (TS), a classic optimisation algorithm in terms of global optimisation 
score, a metric providing the fraction of cells whose Signal-to-Interference-plus-Noise 
Ratio (SINR) and Reference Signal Received Power (RSRP) requirements are satisfied. 

As shown in Figure 10, ZO allows to improve the initial network performance of nearly 25% 
in terms of a global optimisation score. Indeed, ZO provides much larger gain with respect 
to TS even after a few numbers of iterations, and converge to better performance for the 
same transmit power. Equivalently ZO can lead to notable energy saving by allowing to 
reduce the transmit power required to deliver the target network performance.

4.2. ENERGY SAVING OF INDOOR PRRU 
A pico RRU (pRRU) is a very small Radio Unit (RU) usually deployed for indoor coverage 
and characterised by low power consumption. At present, the energy saving feature of 
pRRUs is coordinated on the cell level 5 such that all pRRUs within a given cell maintain 
the same synchronised energy saving states. For example, in a given cell, when a pRRU 
operates with high load, all other pRRUs in that entire cell together with the reference 
pRRU are prevented from entering the energy saving mode, which leads to energy waste. 
 

5  Several pRRUs are used in this context for the transmission of one logical cell,  usually deployed for 
indoor coverage in a similar architecture as an intelligent Distributed Antenna System (iDAS, as already 
discussed in previous NGMN publication from 2020: https://www.ngmn.org/wp-content/uploads/
Publications/2020/Small-cell-economics-external-full-report-v1_1-clean.pdf).

Figure 10. Network performance improvements by tuning horizontal and vertical antenna  
orientation: at each sample time the network RF parameters are updated. 
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Intelligent pRRU energy saving technology is proposed as an enhanced energy saving 
method. It works as follows. A UE receives and measures the reference signals transmitted 
by each pRRU, the Baseband Unit (BBU) monitors which pRRU  each UE is connected to, 
the corresponding traffic load and/or the number of users connected to each pRRU.  For 
those pRRUs without user connection and ongoing data transmission, the PA is turned 
off in a slot-specific manner to realise appropriate management of energy saving states 
rendering separate modes for each separate pRRU, as shown in Figure 11.

Figure 11. Energy saving at pRRU level.

Compared with existing energy saving technologies, the enhanced technology can achieve 
targeted signal transmission according to the location information of the UE, and shut 
down the power amplifier of the vacant pRRU to achieve energy saving. The mechanism 
consists of three main steps as follows: 

STEP 1: The pRRU transmits reference signals to UEs in the cell and determine whether 
the UE is mainly served by the pRRU or not via a measurement report from the UE. 

STEP 2: Based on the mapping relationship between the UE and the pRRU, the BBU is 
able to identify which pRRU is vacant in the cell. 

STEP 3: Based on the service status of the pRRU, the BBU gives an instruction to  the 
pRRUs with data transmission to maintain a “normal working” state, and an instruction 
to the pRRUs without data transmission  to enter an energy saving state. 

Test results were conducted by China Mobile in an office building with 6 pRRUs within 
a real network at low load. During the test, the intelligent pRRU energy saving feature 
was turned off for 3 days and then activated for 3 days. The obtained results show 
that this feature leads to energy saving gain of 20% with respect to the baseline where 
pRRUs are kept awake. Additionally, shutting down pRRUs  can effectively reduce the 
electromagnetic interference to neighboring cells.

4.3. OPTIMISING THE RU LOAD-DEPENDENT POWER 
CONSUMPTION
 
The historical dominance of load-independent EC in RUs has prompted the 
development of various mechanisms aimed at powering down hardware components 
to optimise the amount of energy consumed. However, current projections anticipate 
a continued decrease in load-independent properties of RUs towards load-sensitive 
or load-dependent behavior, thanks to the advancements in power-efficient 
hardware, particularly in RRUs. As the share of load-dependent EC becomes more 
relevant, new strategies for reducing the overall EC of a BS concentrate on decreasing 
energy consumption in RUs already endowed with load-dependent properties.  
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Figure 12. Normalised load-dependent EC achieved at different DL PRB load in a test base station.

These methods are particularly advantageous as they can also be employed in BSs 
providing continuous coverage, which generally cannot be switched off to save energy. 

Load-dependent RU EC is primarily driven by the transmit power, which scales with the 
traffic handled by BS. Classically, the total transmit power at the BSs is evenly distributed 
among the total available PRBs, resulting in a linear growth of load-dependent power 
consumption with the serviced traffic. Emerging load-dependent energy-saving 
schemes aim to optimally adjust the allocated transmit power per PRB to reduce the 
overall EC.

Specifically, with load-dependent energy-saving schemes, when a user experiences good 
channel quality, indicated by a high SINR, the scheduler decreases the transmit power 
per PRB, while increasing the number of PRBs assigned to the user. In this way, the 
overall transmit power can be reduced, leading to a decrease of the load-dependent EC 
while maintaining the target data rate. Significantly, this approach distinguishes itself 
from traditional energy saving methods, which primarily focus on shutting down certain 
components of the BS, since it does not affect network coverage or QoS. 

It is essential to note that, since this method involves increasing the allocated PRBs 
to the user, it is typically implemented during Time Transmission Intervals (TTIs) with 
low load, where it is possible to increase the PRBs to be allocated to each active UE. 
However, the impact from neighboring BSs, which employ shutdown strategies, must 
be considered. Typically, the shutdown of a BS leads to an increased load in neighboring 
BSs, which must now serve users from the deactivated BS. This increase in PRB usage can 
subsequently deplete the pool of available PRBs necessary for the successful execution 
of load-dependent RU energy saving. To mitigate this issue, exchange of energy saving 
information between BSs using shutdown and load-dependent energy saving methods 
is required.
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The positive impact on EC is visually represented in Figure 12 depicting hourly EC samples 
in a BS implementing the described method. It is important to note that the energy values 
have been normalised to the total energy to address privacy concerns.

The graph displays, in black, the load-dependent energy consumed in a baseline scenario 
where the total transmit power at the BS is evenly distributed among the available PRBs. 
As anticipated, there is a linear increase in load-dependent energy consumption with 
the DL PRB load.

Furthermore, for a given DL PRB load, Figure 12 illustrates the load-dependent energy 
consumed when expanding the number of PRBs allocated to UEs while concurrently 
reducing the transmit power per PRB. The reported samples reveal that in this particular 
BS, a notable 30% reduction in the RU load-dependent EC can be achieved through this 
method.

It is essential to emphasize that the degree of transmit power reduction highly depends 
on the channel quality experienced by the users and the BS load. In fact, users facing 
poor channel conditions cannot tolerate a decrease in SINR. Additionally, BSs with high 
traffic loads typically have limited available PRBs to additionally allocate to UEs.

4.4. FRONT-END ADAPTIVITY FOR INCREASED 
ENERGY EFFICIENCY  
4.4.1. THE ANALOG-TO-DIGITAL CONVERTER CHALLENGE 

Were higher data rates to be delivered to users in future networks, the analog-to-
digital converter (ADC) could form a power consumption bottleneck. The energy per 
conversion step of the ADC is constant over the Nyquist sampling frequency, and thus 
bandwidth, up to a threshold frequency of approximately 300 MHz  [18] , see Figure 13. 
For signal bandwidths below this threshold frequency, the ADC power consumption 
scales linearly with the bandwidth. However, for higher bandwidths above this threshold, 
a quadratic increase in ADC power consumption is expected. A 10x bandwidth increase 
will thus lead to a 100x power increase. Even with potential semiconductor technology 
improvements for ADCs, which increased efficiency by 20x between 2009 and 2020  [19] 
, such a substantial increase in power consumption is unlikely to be fully offset, leading 
to a potentially problematic surge in overall power consumption   [19] . 

Figure 13. ADC energy per conversion step over sampling frequency  [19] . 
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4.4.2. THE WAY FORWARD? ADAPTIVE FRONT-ENDS 

The EC for peak spectral efficiencies and peak data rates is expected to rise. However, 
in real-life scenarios lower data rates and lower spectral efficiencies are frequently 
sufficient. For these requirements, the EC of the RU can be significantly reduced by 
selecting modulation schemes that can work with an energy-efficient radio front-end   [19], 
e.g., ZXM  [20] , which allows receiver designs with 1-bit ADCs at the price of decreased 
spectral efficiency. Analogous to a car's gearbox, the Gearbox-PHY selects a suitable 
modulation scheme and corresponding transceiver front-end based on data rate 
requirements and spectral availability, cf. Table 1. This way the high EE at low rates and 
low spectral efficiencies can potentially compensate the increase in EC for peak rates, 
that are required for certain applications. 

Spectral 
Availability

Abundant High Medium Low

PHY/ "Gear"
e.g., Impulse 

Radio

e.g., ZXM [20]  

or CPM
e.g., MIMO-OFDM

e.g., MIMO-OFDM 

or OTFS [21] 

Table 1: A possible Gearbox-PHY scenario [19].
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05 NETWORK 
SOLUTIONS TO 
OPTIMISE POWER 
CONSUMPTION  
This section presents solutions to enhance network EE without introducing QoS degradation 
for users. These solutions leverage the variations of traffic demand in time and space 
together with a more efficient usage of network resource to improve network EE. More 
specifically, Section 5.1 introduces the fundamental steps for online optimisation of network 
EE. Section 5.2 describes a novel optimisation solution that improves network EE leveraging 
heterogeneous QoS requirements in the service area, resulting in up to 18% of reduction 
in the average network power consumption. To meet the rate requirements of 5G services, 
today’s RRUs/AAUs aggregate the capacity across distinct carriers, which has increased the 
RAN power consumption. Section 5.3 and Section 5.4 introduce novel solutions where multi-
carrier coordinated scheduling and spectrum sharing are respectively combined with energy 
saving schemes leading up to 26% of EE gain. Finally, Section 5.5 introduces inter-MNO RAN 
sharing solutions and highlights the benefits in terms of network EE improvement and carbon 
emissions reduction. 
 

5.1. NETWORK ENERGY SAVING AND NETWORK QOS 
DEGRADATION 
Conceptually, when describing the network solutions to achieve energy savings, we can 
distinguish the essential steps in this continuous optimisation process broken down as: 
monitoring, analyse-and-decide and execute, as outlined in Figure 14. The analyse-and-decide 
step includes the intrinsic trade-off between network EC versus communication service quality 
as guided by operator policies, e.g., expert rules, intent, service level agreements. 

Figure 14. Energy saving optimisation loop and its trade-off with service quality. 
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MNOs use traditional rule-based network automation methods in the analyse-and-decide 
step to minimise the impact on communication service quality levels.  Such rules are 
manually defined  or combined  with AI/ML-enhanced functionality, such as using  traffic 
pattern predictions  to adjust parameters such as  the rule-based automation load 
thresholds, the number of active antenna branches, etc. 
 
In the future, it is possible that with the introduction of EE service criteria, see Section 6.1, 
the policies that control the trade-off between energy consumption and service quality 
will get more extensive and complex. With the assistance of AI/ML functions, it would be 
preferable to translate the ‘intent,’ for example, ‘reduce energy consumption while the 
performance is not degraded more than 5%’, into concrete/quantifiable targets for the 
optimisation process. The performance goal and optimisation target can simultaneously 
cover different services and technologies for MNOs. It's like considering VoLTE and 
circuit-switched services' quality priority higher than packet-switched services. If AI/ML 
functions were to be more widely deployed, it would be beneficial for these functions 
to also adjust the optimisation targets whenever there are significant changes in the 
network resources and topology, or for example, when  changes in traffic load trends, 
either unexpected or predictable, are experienced.

5.2. HIERARCHICAL NETWORK ENERGY EFFICIENCY 
OPTIMISATION 
In the Phase II white paper  [12] , we presented a network EE optimisation methodology to 
find the optimum network configuration settings that would save energy while maintaining 
a pre-defined average service quality of a typical metropolitan area. However, in practice, 
the demand for service quality in diverse scenarios is different. Then, a hierarchical 
methodology with three types of policies for achieving the optimum energy saving 
while simultaneously fulfilling different service quality requirements of different zones 
is proposed (see Figure 15): 

 Policy I: Experience first is set for zones with high data rate requirements. A power 
reduction solution is adopted to decrease the co-coverage area among cells to save 
energy while the percentage of users in good coverage is guaranteed. 

 Policy II: Experience balance is set for zones with the requirement of the balance 
between power saving and user experience. A shutdown solution is adopted to migrate 
traffic towards the most energy-efficient cells. 

 Policy III: Energy saving first is set for zones with low rate requirements by applying 
both power adjustment and shutdown solutions.

Figure 15. Hierarchical Energy Efficiency Optimisation. 
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- 3.1%
83 Kwh/Day

5.2.1. APPLICATION OF HIERARCHICAL ENERGY EFFICIENCY OPTIMISATION 

To demonstrate the benefit of the hierarchical EE optimisation, we apply it in a real 
network comprising 134 sites including 400 LTE cells (operating in multiple frequency 
bands) and 155 5G cells (using 2.6GHz and 700MHz). Four phases were conducted in 
this experiment. The first three phases are: all energy saving schemes deactivated; 
expert-based configuration of energy saving schemes; network-level optimisation of 
energy saving schemes. During the fourth phase, the whole metropolitan area was 
divided into multiple zones based on the geographical location, throughput of BSs, and 
service type. A specific energy-saving policy was set for each zone. Then, we computed 
the optimum configurations of the parameters in the energy saving policies by applying 
the hierarchical EE optimisation, including shutdown solution thresholds and duration, 
power adjustment, as well as handover parameters. 

Figure 16. Energy-saving in each phase of the optimisation process for the overall sites under test. 
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The experiment results are shown in Figure 16 and Figure 17. When applying the proposed 
hierarchical energy efficiency optimisation algorithm in phase 4, an additional 83 kWh 
was saved per day compared to phase 3, i.e., 3.1% energy saving gain. As shown in Figure 
17, the average DL user rate and the percentage of users in good coverage in Phase 4 
were both lower than each of their respective values in Phase 3 since the hierarchical 
EE optimisation yielded data rate reduction in zones with low data rate requirements in 
order to increase the energy-saving gains. 
 

5.3. IMPROVING ENERGY EFFICIENCY THROUGH 
COORDINATED RESOURCE USAGE IN MULTI-
CARRIER SYSTEMS 
 
When frequency resource utilisation is not high, to achieve further energy 
saving,  sub-frame shutdown can be implemented by col lect ing data 
packets together and delivering them on fewer symbols during downlink 
scheduling. Also, it’s appropriate to send the data packets on continuous symbols 
to increase the probability of shutting down the PA and to increase the number of 
continuous deactivated symbols to achieve further energy saving gains (see Figure 18).  

Since the sub-frame shutdown enhancement technique may lead to increased user 
plane delay , it is necessary to adopt converged scheduling considering the specific 5g 
QoS identifier (5QI) value in any given scenario. Importantly, the increased delay of data 
packets should not adversely affect user experience.

Figure 18. Enhancement of sub-frame level shutdown. 

In scenarios of multiple carriers using common RF channels, if the BS detects that no 
carrier has data to transmit, the sub-frame shutdown is enabled to shut off the PA in the 
empty symbols to reduce energy consumption. When the BS detects that any carrier has 
data to transmit in this symbol, the sub-frame shutdown function is disabled to ensure 
the integrity of data transmission. However, due to the randomness of the traffic burst, 
the benefit of the sub-frame shutdown enhancement technique applied for separate 
carriers is limited. Therefore, the concentration of activated symbols among multiple-
carriers should be considered during downlink scheduling to increase the probability 
of  the PA shutting off. 

Specifically, the data packets of each single carrier are scheduled in a centralised manner 
while not exceeding the delay constraints of different services. At the same time, the 
scheduling of symbols in multiple carriers can be aligned in the time domain to improve 
the proportion of deactivated symbols or sub-frames and save energy (see Figure 19).

traffic scheduling optimization

DL Traffic

active DL subframe deactivate DL subframe
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5.4. ENERGY SAVING AND SPECTRUM SHARING IN 
MULTI-CARRIER SYSTEMS  
 
To enable a carrier shutdown mechanism without adversely impacting coverage and 
data rates, 3GPP has introduced the concept of co-coverage relationships where capacity 
booster cells and coverage cells are paired, and they coordinate during cell shutdown 
and activation mechanisms such that the users’ QoS is not reduced. 

In general, paired coverage and capacity cells are deployed on distinct AAUs to maximise 
energy saving through carrier shutdown, since if the AAUs are distinct, the paired coverage 
and capacity cells do not share the same PA. Although the above technique can theoretically 
reduce the EC of cellular networks, its current implementation has some limitations: in 
particular, the network spectrum efficiency is limited due to the momentary deactivation 
of capacity cells and the temporarily unused spectrum of these shut-down cells. 

Figure 19. Multi-carrier converged scheduling for enhancement of sub-frame level shutdown. 

Figure 20. Power consumption and EE assessment of joint spectrum sharing and carrier shutdown using the 
power model in  [12].  
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By implementing spectrum sharing between a paired shutdown capacity booster cell and 
its coverage cell MNOs would allow the latter to handle larger traffic volumes relative 
to its baseline configuration without spectrum sharing. This would in turn reduce the 
need for activating the switched off capacity cell, when the coverage cell’s traffic volume 
were to increase, which would further increase the network EE with respect to standard 
carrier shutdown.  

Figure 20 provides a qualitative example of the power saving and EE gains brought by 
combining spectrum sharing and carrier shutdown, evaluated using the power model 
introduced in  [12]. In this example, we consider a capacity booster cell operating at 2.6 
GHz (f0) with 20 MHz bandwidth, and a coverage cell operating at 1.8 GHz (f1) with 10 
MHz bandwidth. When both are active the maximum power consumption of the two 
cells is 1450W and the maximum EE is 540 Mb/Wh (see the left side of Figure 20). When 
the load of the capacity booster cell decreases, it can shutdown saving around 450 
W; however, the overall EE decreases as the capacity of the shutdown cell is lost (see 
the middle of Figure 20). By enabling the coverage cell to borrow f0, the overall power 
consumption slightly increases with respect to standard carrier shutdown due to the 
additional power required at the coverage cell to transmit data on f0; however, the EE 
can increase up to 684 Mb/Wh (see the right side of Figure 20). To summarise, spectrum 
sharing between capacity booster cells and coverage cells can lead to network energy 
efficiency enhancements by slightly increasing the network energy consumption to service 
an even greater increase in traffic volume, relative to the baseline energy consumption 
when only carrier shutdown is implemented. 

5.5. INTER-MNOS RAN SHARING 

RAN sharing is a strategic collaboration where two or more MNOs share various components 
of their wireless infrastructure, thereby enhancing network coverage, capacity, and quality, 
while reducing costs, energy consumption, and carbon emissions. This collaboration can 
encompass a wide array of resources, including cell towers, antennae, BS equipment, 
and even carrier frequencies. There are two primary types of sharing:

 PASSIVE SHARING: involves the sharing of passive infrastructure elements. In this 
model, operators share common physical structures, such as cell towers, masts, 
and site facilities e.g., cooling and direct current (DC) power systems. While MNOs 
maintain separate radio equipment, the shared infrastructure significantly reduces 
the environmental impact by eliminating the need for duplicating tower construction. 
Passive sharing is particularly effective in reducing the visual and environmental 
impact of cell towers, making it a more sustainable option for network expansion.  

 ACTIVE SHARING: involves operators jointly deploying and operating network 
equipment. In this model, multiple operators share both the physical infrastructure 
and the active radio products. This includes the deployment of shared BSs, antennae, 
and transmission equipment. Active sharing allows operators to maximise resource 
utilisation, thereby reducing the number of duplicate network elements and lowering 
energy consumption. It also facilitates a more efficient use of spectrum resources. 
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Moreover, RAN sharing brings about several key benefits in terms of network EE and 
carbon emissions reduction. These benefits include: 

 REDUCED ENERGY CONSUMPTION: by eliminating the duplication of under-utilised 
resources and sharing network components, RAN sharing leads to a significant 
reduction in EC. Fewer BSs and antennae result in lower power requirements, cooling 
needs, and maintenance costs.  

 OPTIMISED NETWORK UTILISATION: network elements are used more efficiently, 
reducing the overall energy required to provide the same level of service. Furthermore, 
MNOs can implement energy-saving technologies and practices more effectively in a 
shared network environment. 

 ECONOMIES OF SCALE: collaborative efforts in RAN sharing enable operators to 
leverage economies of scale when it comes to network upgrades and technology 
investments. This, in turn, makes it more affordable for MNOs to implement energy-
efficient technologies, such as renewable energy sources. 

A case study was implemented for a symmetric agreement between 2 MNOs with similar 
market shares and RAN resources such that: 

 50% of the shared RAN resources are owned (and operationally controlled) by one 
MNO, while the other 50% are owned (controlled) by the other one. 

 Any shared RAN resource may be used to process traffic to / from any of the 2 MNOs’ 
subscribers.

This case study is compared with standard dedicated RAN architecture in Figure 21. 

This collaborative approach to RAN sharing not only promotes efficiency and flexibility 
but also results in significant energy savings: in the active RAN sharing case study, each 
MNO benefits from approximately 30% energy OPEX savings. 

It is important to note that quality of the network is not only based on the radio access 
part but on the end-to-end link, inducing an optimisation process of the full chain, from 
the gateways, to the backhaul and the caches. Network sharing does not preclude MNOs 
from differentiating their network services and proposing “customer fit” services, thanks 
end to end optimisation.  

Figure 21. Non-Active RAN Sharing vs Active RAN sharing.

RAN Network 1 RAN Network 2

Pool of

Share 1 Share 2

Traffic to/ from Traffic to/ from
Traffic to/ from Traffic to/ from
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06 INTERWORKING 
BETWEEN MOBILE 
NETWORKS AND 
ENERGY SUPPLIERS  
This section introduces a near-future ecosystem where MNOs and energy suppliers 
cooperate to respond to environmental as well as economic sustainability challenges, 
leveraging renewable energy sources, energy storage facilities, and real-time information 
exchange.  

6.1. ENERGY EFFICIENCY AS A SERVICE CRITERION  
 
3GPP is studying the definition of "Energy Efficiency as a Service Criteria"  [22]  for Release 
19. This criterion enables the delivery of services with diverse EE and EC policies. In this 
context, MNOs can define subscription policies that cover the aggregate quantity of 
EC of the network elements and functions used by the subscriber. These policies may 
include a maximum EC rate to limit energy consumption within a given time interval or 
a maximum energy credit to restrict the total amount of EC. Subscription policies can be 
applied either to the subscriber (all services) or to particular services. Energy credits are a 
quantity of credits related to the energy associated with network resources usage by the 
subscriber (e.g., EC) that can be used for credit control by the 5G system. In some context 
energy credit can be related to carbon intensity/emissions as well. The EC/charging rate 
defines “how fast” energy credits can be consumed via some mapping rule or conversion 
algorithm that can take several other metrics into account, e.g., time, location. 
 
Since enforcing EE may negatively impact the QoS delivered to users, the network should, at 
least, support EC rate or energy credit enforcement for services without QoS criteria, such 
as best-effort traffic, which has no performance guarantees. If a user agrees to subscribe 
to "green communication" for some services with QoS criteria, the operator can provide 
a replaceable SLA with slightly reduced quality guarantees for the service when enforcing 
EC policies in agreement. Additionally, the MNO may change dynamically the charging 
rate, in terms of 3GPP “policy and charging framework”, of the service provided to the 
user. Users inclined towards eco-friendly practices may indicate their preferences on a 
more granular level, i.e., during each service use. Implementing mechanisms that enable 
users to directly communicate their willingness to adjust QoS — either by downgrading 
for energy savings or upgrading for enhanced experience — could allow the network to 
dynamically adapt resource allocation and energy saving strategy in alignment with the 
user's current expectations. This approach may not only facilitate network cells entering 
in “energy state” but also potentially empower users by providing them the capability to 
impact their network environmental footprint. 
 
The term "energy state" refers to the state of a cell, network element, and/or network 
function with respect to energy. By shutting down certain equipment, such as symbol 
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shutdown, carrier shutdown, or channel shutdown, the cell can enter an energy state 
and provide a certain capacity. In line with the cell load, a predefined list of energy 
states supported by the cell can be configured for verticals and operators. Each state is 
associated with a respective cell capacity and energy efficiency. Different energy states 
that vary with the working status of telecommunications equipment could  be beneficial 
for verticals and operators to help them save energy. 
 

6.2. COOPERATION BETWEEN COMMUNICATIONS 
NETWORK AND ELECTRIC-POWER GRID  
 
In recent years, the growth of the Information and Communication Technology (ICT) 
infrastructure, led by 5G BSs and data centers, has highlighted the energy consumption 
challenge within the communication industry. In this context, the usage of renewable 
energy sources such as solar and wind energy has been regarded as a crucial solution 
for energy conservation and carbon reduction. However, due to the unpredictability and 
instability of the renewable energy sources, large-scale renewable EC poses a significant 
challenge for the construction and operation of power grids. 

The EC of communication networks needs to be characterised by flexibility and controllability. 
Hence, cooperation between communications and energy networks could enable flexible 
interactions between energy sources and traffic loads, which could be a key enabler for 
the low-carbon transformation of energy, achieving peak carbon dioxide emissions and 
carbon neutrality goals. There are two primary methods to introduce renewable energy 
to communications networks: 

1. With suitable climates, small-scale wind turbines and rooftop photovoltaic systems 
can be employed to directly power BS equipment.

2.  Communications networks collaborate with power grids, utilising grid-supplied 
renewable energy to power BSs. 

Since renewable energy sources are volatile and unpredictable, in order to adopt 
renewable energy in mobile networks, three technical directions are presented in this 
publication (see Figure 22): 

Figure 22. Technical directions for integrating renewable energy in mobile networks.
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Figure 23. End to end energy optimisation framework in a telecom system. 

 SERVICE FLEXIBILITY: This involves dynamically adjusting the energy saving states, 
scheduling strategy, user access management, and transmit power of the BS to meet 
the requirements of renewable energy consumption in the current power supply area, 
achieving the balance between energy demand of service and supply of renewable 
energy. 

 COMPUTING LOAD MOBILITY: This involves offloading computing tasks to edge 
computing nodes with sufficient renewable energy supply. It also leads to improving 
the ability of monitoring energy and power consumption so that computing routing 
technology can be used to transfer computing load between data centers more 
accurately, enabling flexible scheduling of EC and assisting power grids in consuming 
renewable energy locally. 

 POWER SUPPLY AND STORAGE: This involves ensuring that communications 
equipment rooms have sufficient and abundant energy storage resources to stabilise 
power supply, as well as meeting computing requirements, maintaining storage 
space for batteries, sustaining appropriate cooling conditions, providing advantages 
in participating in the power grid market with auxiliary services. The power supply 
systems in the equipment room can be improved to support the capabilities of both 
power supply and storage, enabling flexible power scheduling. By battery charging 
and discharging, dynamically responding to renewable EC requirements, could help to 
strike the right balance between power supply and consumption in the power grids. 

6.3. BALANCING ENERGY CONSUMPTION AND 
ENERGY SUPPLY FOR TELECOMS SYSTEM 
 
Telecoms networks rely on diverse sources of energy supply in different countries and 
regions. Some networks are supported by reliable power grids that can deliver sufficient 
and continuous power enabling carbon reduction solutions to be sought with renewable 
energy, while in other deployments BSs are still equipped with diesel generators. In both 
scenarios, the joint optimisation of EC and energy supply, as presented in this publication 
and depicted in Figure 23, has great potential to deal with the growing sustainability 
challenges faced by the industry.
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In Figure 23, the EC layer describes the network characteristics in terms of EC, while the 
energy supply layer models the energy sources, i.e., mains power, renewable energy, diesel 
generator, and each associated energy storage system. Classic network EC optimisation 
is based on various software and hardware network solutions, such those described in 
Section 3, which are designed to balance the power demand and the energy supply in 
the network. In this context, the potential for cooperation between the EC and energy 
supply layers stem from two aspects: 

 Optimising power demand distribution to match the energy supply by adjusting the 
network configuration. For regions where mains power is scarce, an optimised system 
transfers power demand to BSs with diesel generators to guarantee sufficient energy 
supply and maintain network availability and user experience. For regions with more 
abundant renewable energy, power demand is transferred to BSs with renewable 
energy to decrease the energy supply cost and environmental footprint. 

 Deploying energy storage facilities next to BSs with high power demand and stringent 
service requirements, together with renewable energy sources, can improve energy 
efficiency and network availability. 

By optimising jointly power demand and energy supply, renewable energy can be exploited 
more efficiently, and the usage of diesel generator and mains power can be reduced, 
without affecting network availability and user experience. 
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07 ENERGY 
EFFICIENCY IN 
DISAGGREGATED 
NETWORKS  
In this section, we present opportunities to increase EE for virtualised and disaggregated 
network and an overall EE requirement that Open RAN memorandum of understanding 
(MoU) operators consider to be priorities for Open RAN deployment. 

7.1. EE OPPORTUNITIES IN VIRTUALISED AND 
DISAGGREGATED NETWORKS   
  
A virtualised and disaggregated mobile network offers MNO the flexibility in hardware, 
software and systems integration which drives innovation and agility in cloud services to 
efficiently deliver a myriad services with different performance requirements. Discussion 
of power measurements, the power measurements model, and algorithms to optimise 
energy consumption of VNFs based on commercial off-the-shelf hardware and how to 
increase energy efficiency developed by the industry is covered by the NGMN Virtualised 
Network Infrastructure Metering Publication, Phase 3  [23] .  
 
In a disaggregated open RAN, multiple RAN vendors can contribute various components, 
offering substantial opportunities to enhance EE. Unlike a traditional RAN where a 
single vendor provides solutions, an open and disaggregated RAN facilitates rapid 
implementation of innovative technologies in radios, processors, servers, hardware, 
software, AI/ML features, and RIC applications from competing vendors. One example 
is of an architecture where a single RU can be connected to several Distributed Units 
(DUs) over optical paths. This approach brings the benefits of resource pooling and 
added reliability through redundancy. By dynamically reducing the number of DUs to 
which a RU is connected based on traffic load, it's possible to achieve reduced power 
consumption. Dynamic mobile fronthaul optical path switching saves power usage by 
leveraging the well-documented fluctuation in the number of mobile users in an area 
between day and night, especially in urban areas where the variation can typically be more 
than a factor of ten. As the number of mobile users and associated traffic in a particular 
area varies, so too does the required network resources in a proportional manner. The 
process of moving mobile services from one DU to another is carried out directly at the 
optical transport layer, utilising wavelength switching. Power usage saving can be realised 
by switching optical paths in the fronthaul to move traffic to smaller overall number of 
consolidated DUs when network traffic load is low, freeing unused DUs to go into low 
power mode or be turned off completely. 
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7.2. EE REQUIREMENTS IN OPEN RAN MOU  
7.2.1. OPEN RAN MOU SCOPE 

Open RAN MoU is a Memorandum of Understanding (MoU) signed by a group of 5 
European MNOs (Deutsche Telekom, Orange, TIM, Telefónica and Vodafone Group). The 
goal of the MoU is to promote the timely deployment of Open RAN technologies and 
ensure that a strong ecosystem of companies emerges in Europe.  

MoU communication is made mainly via the delivery of white papers, progress reports 
and via the annual release of the “Open RAN Technical Priorities Document”  [24]  which 
provides a comprehensive list of technical requirements that the MNO signatories to 
the Open RAN MoU consider priorities for Open RAN deployment. Three technical 
releases have been delivered so far. Energy efficiency topics have been mainly analysed 
in Rel. 2 and Rel. 3 of the Open RAN Technical Priorities Document. EE will also continue 
to be analysed in Rel.4, planned for being finalised in Q2 2024. A summary of the EE 
requirements highlighted by the MoU in Rel.2 and Rel.3 is provided in Section 7.2.2. 
The MoU has also provided its vision on the status of EE in Open RAN in a white 
paper entitled “Open RAN MoU progress update on maturity, security and energy 
efficiency”  [25] . The key messages related to EE are summarised in Section 7.2.3. 
 
7.2.2. OVERVIEW OF MOU EE TECHNICAL REQUIREMENTS 

EE is an end-to-end requirement involving all domains of the Open RAN architecture. The 
overall objective for Open RAN networks is to gradually become more energy efficient 
than traditional RAN without sacrificing Open RAN concepts such as cloudification and 
disaggregation.  

EE for Open RAN networks should therefore rely on the following pillars:  

 Power efficient hardware.

 Report of EE KPIs at different hardware and software levels.

 Open RAN features to improve EE on a functional level compared to traditional RAN.

 Intelligence and orchestration to automate EE features.

The Open RAN MoU has provided EE priorities across the three releases of the MoU 
Technical Priority Document, encompassing different network components: O-RU, 
O-CU/O-DU SW & HW, O-Cloud SW platform, RIC, RAN features and SMO. The main 
requirements identified by the MoU are summarised in Table 2. 

Table 2: Summary of MoU EE Technical requirements.

Domain EE Requirements

O-RU Achieve recommended power consumption targets

O-Cloud infra

Vendor should provide:
• Energy Efficiency KPI & Monitoring
• Power, energy and environmental (PEE) parameters and measurement data 
at the workload level (e.g., pod, CNF, etc.)

O-CU O-DU Vendor should provide energy efficiency counters/KPI (CNF)

RAN features

Vendor should support the following features:
• Base station Sleep mode mechanisms
• Battery consumption saving
• Enhanced Radio Deep Sleep Modes
• ON/OFF DL MIMO adaptation
• LTE/NR Layer switch-off in multi-layer sites
• Artificial RF load generation
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7.2.3. KEY MESSAGES FROM MOU PROGRESS REPORT ON EE

In  [25]  the MoU presents its vision of the current state of the O-RAN ecosystem and the 
actions envisaged to accelerate the deployment of energy efficient O-RAN networks.  

Progress is being made in the industry to increase the EE of all Open RAN building blocks, 
with particular focus on radio transmitters, cloud infrastructure, energy monitoring and 
intelligence-based mechanisms: 

 RADIO TRANSMITTERS: O-RUs contribute the greatest part of the total power 
consumption of the RAN (around 80%), so it is essential that Open RAN O-RUs are at 
least as energy efficient as their counterparts in the traditional RAN. Enhancements are 
being considered in the O-RAN ALLIANCE to enable EE features available to traditional 
vendors, e.g., allowing control of the O-RU switch-over  and shutdown modes by the 
O-DU through the Open Fronthaul interface. 

To this end, the Open RAN MoU MNOs have defined EE targets for Open RAN O-RU in 
both loaded and unloaded conditions, which may be used for benchmarking Open RAN 
O-RU with traditional RAN. 

 CLOUD INFRASTRUCTURE: EE for cloud infrastructure is improving in the industry 
with progress in the efficiency of the CPU, in accelerator technologies, and more 
integrated chipsets natively optimised for lower power consumption.  

Open RAN MoU MNOs have performed a first review of all the cloud infrastructure hardware 
elements to be optimised, considering not only processors but also sub-components 
such as memory storage, NIC cards, fans, power supply. Ultimately, the goal is to identify 
relevant monitoring and energy-saving features, and automation mechanisms. 

 ENERGY MONITORING: While the O-RAN ALLIANCE has primarily focused on CPU 
optimisation, Open RAN MoU MNOs wish to extend monitoring to a variety of server 
components including accelerators, memory storage, etc. To this end, the MoU 
promotes open Application Programming Interfaces (APIs) at all levels of the Open 
RAN system to monitor the power consumption of all possible hardware elements: 
in particular, for the monitoring of O-RUs and of most sub-components of the cloud 
infrastructure. 

 INTELLIGENCE: EE can be improved by using open standardised interfaces together 
with intelligence provided by O-RAN architecture. Intelligence will eventually allow 
Open RAN to be more energy efficient than traditional RAN, thanks to real-time 
monitoring, intelligent switch-off, adaptation to traffic, and native AI/ML offering 
more granularity in terms of the energy management of RAN elements. Open RAN 
MoU MNOs are willing to develop an AI/ML architecture framework, which would be 
capable of tackling the optimisation of EE. 

SMO

Vendor should support the following features and metrics:
• Activating/deactivating energy saving features
• Cluster/ CNF/ PNF Energy efficiency KPI (availability of data for HW, CaaS, 
PaaS, NF instance and availability of dashboard) 

RIC use cases:
O-RAN EE use cases

Vendor should provide the following use cases:
• Carrier and Cell Switch Off/On: algorithm to trigger carrier/cell off/on swit-
ching may be hosted in the Non-RT RIC/SMO or in the Near-RT RIC
• RF Channel Reconfiguration Off/On: algorithm to trigger RF Channel Reconfi-
guration may be hosted in the Non-RT RIC or in the Near-RT RIC
• Advanced Sleep Mode: impact on Non-RT RIC and in the Near-RT RIC
• O-Cloud Resource Energy Saving Mode:  enable optimisation of O-Cloud re-
sources, e.g., O-Cloud node(s) shutdown, modify P-State and C-state via SMO / 
Non-RT RIC
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08 ENERGY AWARE 
AI/ML  
Machine Learning (ML) and Artificial Intelligence (AI) increasingly have practical applications 
within mobile networks. This section provides insights on the following AI/ML applications 
to improve the EE of mobile networks: 

1. Identification of the low-EE BS sites in a network.

2. Assistance to the optimisation of network energy saving feature management.

3.  Aligning the network capacity and energy consumption under performance constraints. 

4.  Optimising the AI/ML model size and hence its energy transmission cost. 

8.1. IDENTIFICATION OF LOW ENERGY-EFFICIENCY 
BSS BASED ON AI/ML 

A possible low-hanging fruit in the journey to optimise and improve the EE of the RAN, 
is to identify the low-EE BS sites among many BS sites. This allows adjustment of the 
configuration of these sites so that the overall network EE can be improved. Due to the large 
number of varying BS equipment specifications and different parameter configurations, 
the EE values (bits per energy) of different BSs varies a lot. For a relevant comparison of 
different sites and to implement such an EE evaluation accordingly, the BS sites can be 
consolidated into different categories, and low-EE ones can be identified within a one 
given category of BS sites.  
  
In this scenario, AI algorithms are introduced to deal with the complex and diverse 
parameters that influence EE, and can automatically identify and classify different types 
of BS. The specific procedure is represented in Figure 24 and includes the following steps: 

1. The BS sites with different static parameters such as BS type, number of channels, carrier 
frequency, bandwidth, number of cells, maximum transmit power etc. are divided 
into different groups. 

2. For each group, a relationship model is established between EE and the dynamic 
parameters, e.g. traffic volume, PRB usage, or user numbers. with an appropriate 
fitting function trained using the Support Vector Regression (SVR) algorithm. 

3. Due to the similarity of feature samples of different fitting functions, K-Means or 
DBSCAN clustering algorithms are employed to cluster the feature set, achieving 
intelligent classification of BS sites.
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Figure 24. Classification of BS sites in terms of EE. 

Figure 25. EE baseline calculation based on real network data. 
 

Even within the same category of BS sites, EE values can vary significantly due to different 
levels of traffic load. Performing landscape comparisons of EE among BSs of the same 
type is a challenge.  

One method is to use as a baseline the best fit describing the relation between EE and 
traffic values (see Figure 25). From the trend of the EE curve with respect to the traffic, the 
EE of each BS site can be assessed by comparing the EE value against the corresponding 
EE baseline with the same traffic values.  
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AI algorithms could also be employed to identify the low-EE BSs by establishing 
anomaly site models. Specifically, for each type of BSs, an anomaly detection algorithm 
such as Isolation Forest or Local Outlier Factor can be used for model training based on 
the distribution of EE values of the same category of BS sites along with the traffic load. 
An anomaly detection model is then obtained for each type of BS sites to accurately 
identify the EE outliers, i.e. the low-energy-efficiency BS sites. 

8.2. AI/ML ASSISTED NETWORK ENERGY SAVING 

Energy optimisation is fundamentally about maximising energy efficiency under 
performance constraints. Therefore, performance constraints are the core of evaluation 
and the foundational guarantee for achieving maximum energy efficiency. In addition 
to traditional KPIs like handover success rate, RRC (re)establishment success rate, the 
system performance also includes QoS (Quality of Service) KPIs such as scheduling rate, 
coverage, and latency. Proper energy decision-making strives for a balance between 
system performance and energy efficiency. AI/ML techniques can help to make better 
energy saving decisions, e.g., cell activation/deactivation, by predicting future energy 
efficiency and load states.  

In this publication, we present AI/ML-assisted Energy Saving tested in Panyu District, 
Guangzhou, China, with three components: all-day symbol shutdown, all-day AI/ML-
based channel shutdown, and AI/ML-based deep sleep. Load prediction, based on a Long 
Short-Term Memory (LSTM) ML model leveraging collected historical data, was evaluated 
across three-time ranges: T0 represents the time without energy-saving strategies, T1 
represents the time with traditional energy-saving strategies, and T2 represents the time 
when AI/ML technology is used. The testing configuration is detailed in Table 3. 

Table 3: Configuration Information of Evaluation. 

Results show that the use of AI/ML techniques has extended the duration of shutdown 
for these strategies, resulting in a 2.48% reduction of power consumption, and a 16.85% 
improvement in RAN EE compared with traditional methods. Figure 26(a) shows the 
average power supply, and the use of AI/ML techniques resulting in a 23.87% reduction 
in power consumption. Figure 26 (b) shows an energy efficiency improvement of 23.40% 
achieved by using AI/ML techniques.



39

Figure 26. (a). Average power supply (Unit: W); (b). Energy efficiency (Unit: GB/kWh). 

8.3. ENERGY SAVINGS VIA CARRIER SHUTDOWN 
UNDER PERFORMANCE CONSTRAINTS  

Today’s BSs have typically more than one frequency carrier, as illustrated in Figure 27. By 
shutting down frequency carriers, the energy consumed by the BS decreases significantly 
as the PA are responsible for the bulk of the energy consumed by a BS.  

But, as user traffic transfers to the remaining active carriers and their load increases, the 
traffic performance may typically degrade. Here lies the need for the right trade-off so 
that the energy increment due to the load increase on active carriers is over-compensated 
by the PA switch-off, to deliver energy savings. 
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To decide when carriers should be shut down, they are first ranked according to a given 
criterion (e.g., in increasing coverage radius). Then, each successive carrier is turned off 
when the traffic load in the given sector dips below a certain minimum-threshold, and 
switched back on when the load exceeds a certain maximum-threshold. This induces a 
hysteresis process on the traffic load, that tends to remain within the minimum/maximum-
threshold boundaries, as illustrated in the Figure 28. 

Figure 27. Illustration of a base station with two carriers. 

Figure 28. Illustration of the traffic load hysteresis for a given base station sector. 

Different sectors may experience very different traffic conditions, in terms of average 
SINR offered to the users. Hence, different sectors can afford different levels of traffic 
load (hence, of min/max-threshold) on their cells to offer similar QoS to their connected 
users. Typically, the better the radio conditions are in a sector, the higher the load (hence, 
the higher the thresholds) that can be accommodated, leading to higher potential energy 
savings. 

The optimisation goal is to reduce the BS energy consumption while maintaining 
“acceptable” user QoS  with high confidence. One definition of “acceptable” QoS at a 
given time is the output of a Boolean formula that takes as input the recent values of 
certain KPIs of interest, i.e., DL throughout, traffic volume, cell load, etc., and produces 
the value 1 if the KPIs are higher than predefined target values, and 0 otherwise. 

The optimisation leads to energy savings by properly tuning the min/max-thresholds 
mentioned above on a sector basis and across time. In fact, traffic conditions vary within 
the same sector, following the classic busy/non-busy periodical cycles, which hints at the 
fact that different hours of the day deserve different threshold values.

Frequency 1

Frequency 2
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Figure 29. Impact of the min/max-thresholds on the energy savings QoS tradeoff. 

Figure 30 Illustration of a possible approach to track over time the optimal thresholds.

As illustrated in Figure 29, there then exists an optimal pair of thresholds (depending 
on the sector and on the time of the day) such that savings are maximised while QoS 
remains within the predefined boundaries. 

To find and track over time such a pair of optimal thresholds, one approach is to employ 
Bayesian optimisation (BO) techniques, for the following reasons:

 BO avoids any cold start when the learning begins, as it can naturally incorporate the 
learnings from historical data. 

 BO allows for fast convergence. 

 BO takes informed and non-random steps at each time, given the statistical knowledge 
it has acquired, and hence, it does not incur any performance drop during the learning 
process. 
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Such a procedure can demonstrably decrease the energy consumption of a real network 
by more than 10% without degrading the QoS perceived by the user. For example, it was 
shown during live trials that the energy consumed by BSs could be reduced by 11%, if  the 
system was bound by constraints such that the 4G downlink throughput exceeds Y=5 
Mbps for at least X=89% of the time, where such values of X, Y could be predefined. In 
other scenarios, were any of the value's X or Y to decrease, then higher energy savings 
would be achieved. 

Indeed, depending on the MNO’s appetite for acceptable QoS degradation, the level of 
aggressiveness of the procedure can be tuned by appropriately, as illustrated in Figure 
30, defining the formula that defines whether current KPI values are “acceptable”, as 
well as the level of confidence with which we ensure that KPI values are “acceptable”. 

 
8.4. A RESOURCE-AWARE MACHINE LEARNING 
FRAMEWORK  
 
With the increasing size of deep learning models AI/ML-based applications are increasingly 
becoming computation-intensive, power-hungry, and memory-demanding.  

The large size of AI/ML models hinders their deployment on resource-constrained network 
devices due to insufficient computational power, storage, or memory. Also, this results 
in long inference times and high energy consumption when running or transferring AI/
ML models in the network.  

Moreover, a network device may not be able to store all the scenario-dependent AI/ML 
models due to memory constraints. Consequently, it may request a fresh model to the 
network endpoint to execute a new task and/or operate under new conditions. 

Several optimisation methods have been proposed to address these challenges, including 
model compression and quantisation. However, these solutions are inefficient from a 
communication point-of-view  [26] .

Figure 31. Resource efficient AI/ML model training  [27] . 
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To solve these challenges, a recently introduced AI/ML framework can be used which 
samples various configurations of a given neural network, the same as that used during 
the training process to create a flexible model with minimal accuracy loss compared to 
the full model  [26] .6 The fundamental component of this approach is the AI/ML model 
training phase, described in Figure 31. In a nutshell, this selects the number of hidden 
layers to update at each training iteration, e.g., minibatch, according to a given probability 
distribution. After choosing the number of layers for a given training iteration, the non-
selected layers are skipped when computing the error and updating the weights. This 
approach is designed to a) accommodate the diverse storage/computational resources 
available on different devices during the training and inference phase and, b) minimise the 
energy consumption due to the model transmission and execution. Exemplary results are 
described in Table 4, where our approach is compared with two benchmarks in terms of 
test accuracy using Visual Transformers (ViTs) architectures on the CIFAR-100 dataset  [28] .

Table 4: Comparison of test accuracy (%) for visual transformers models on CIFAR-100 dataset.

In the independent training benchmark, each ViT architecture is independently trained 
and fully transmitted to network device where it is run. In the second benchmark, only 
ViT3 (the full model) is trained but, due to e.g., bandwidth constraints only part of it is 
available at the network device. We can observe that the accuracy drops by nearly 50% 
and by nearly 90% when the available network corresponds to the size of ViT2 (2/3 of 
the full model) and to the size of ViT1 (1/3 of the full model). In contrast, the results show 
a negligible accuracy loss when using the proposed solution in the same conditions.

Therefore, one could choose to use the proposed approach to transmit smaller models, 
with considerable network energy saving, without impacting the quality of service. In 
addition, the proposed approach requires only one training process, instead of 3, which 
only requires 37% of the FLOPs needed by the training process of ViT3, which results 
in significant savings in computational time and energy consumption during training. 

Model size 
equivalence

Independent training;
Full model transmission

One training and 
partial  

transmission
Our proposal

ViT-1 39.3 ± 0.43 5.8 ± 0.3 35.9 ± 0.6

ViT-2 49.7 ± 0.12 27.5 ± 0.83 49.7 ± 0.6

ViT-3 52.8 ± 0.85 52.8 ± 0.85 52.8 ± 0.85
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09 CONCLUSION
NGMN advises that MNOs carefully assess the solutions to enhance network energy 
efficiency presented in this publication, and analyse the prioritised list of strategies in Table 
5, where energy saving approaches are organised into three broad categories and time-
horizons: (short-term) process optimisations; (medium-term) engineering optimisations;  
and (long-term) new technologies. 

Table 5: Energy saving potential from technologies described in this report.

Area Energy Saving Solution Examples of Energy  
Saving Potential Timeframe

Process 
Optimisation

Measuring RAN Energy 
Efficiency (Sec. 2) 

This framework allows MNOs 
to correctly measure EC and 

EE of RAN equipment and take 
wise optimisation decisions 

accordingly 

Short-term

Energy saving of indoor pRRU 
(Sec. 4.2) 

This solution achieves energy 
saving gain of 20% with 

respect to the always-on net-
work deployment 

Short-term 

Optimising load-dependent  
power consumption (Sec. 4.3) 

This method can achieve 30% 
reduction in load-dependent 
energy consumption without 

impacting UEs’ QoS 

Short-term 

Hierarchical Network Energy 
Efficiency Optimisation  

(Sec. 5.2) 

This algorithm can be added 
on top of the standard energy 
saving policy to achieve 3.1% 
additional energy saving gain 

Short-term 

Improving energy efficiency 
through coordinated resource 
usage in multi-carrier systems 

(Sec 5.3) 

The scheduling of multiple car-
riers can be aligned in the time 
domain to increase the symbol 

shutdown duration. 

Short-term 

Energy saving and spectrum 
sharing in multi-carrier 

systems (Sec. 5.4) 

Implementing carrier shut-
down together with spectrum 

sharing between capacity 
booster cells and coverage 

cells can lead to 26% network 
EE gains. 

Short-term 

Identification of low energy-
efficiency BSs based on AI/ML 

(Sec. 8.1) 

AI-based mechanism to iden-
tify low-EE BS sites such that 

necessary actions can be taken 
to improve the overall network 

energy efficiency 

Medium-term 

AI/ML assisted Network Energy 
Saving (Sec. 8.2) 

It extends the duration of 
shutdown, resulting in a 2.48% 
reduction of power consump-
tion, and a 16.85% improve-

ment in energy efficiency. 

Medium-term 
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Area Energy Saving Solution Examples of Energy Saving 
Potential Timeframe

Energy savings via 
capacity shutdown 
under performance 
constraints (Sec. 8.3) 

Measuring RAN Energy Effi-
ciency (Sec. 2) Short-term 

Process 
Optimisation

Energy savings via ca-
pacity shutdown under 

performance constraints 
(Sec. 8.3) 

The BS energy consumed 
could be reduced by 11% by 
ensuring that 4G DL throug-
hput exceeds 5 Mbps for at 

least 89% of the time 

Short-term 

Engineering 
Optimisation 

Passive antenna efficien-
cy optimisation (Sec. 4.1) 

Passive antennas with remote 
azimuth and tilt control com-
bined with AI leads to a 25% 

energy saving gain  

Medium-term

Inter-MNOs RAN sharing  
(Sec. 5.5) 

Active RAN sharing case study 
has shown 30% energy OPEX 

savings 
Medium-term

Interworking between 
communication network 
and -power supply (Sec.s 

6.2 and 6.3) 

Reducing network OPEX and 
increasing its availability by 

jointly dimensioning and con-
trolling communication and 

power resources 

Medium-term 

Dynamic reconfiguring 
connection between a 
RU and DUs based on 
traffic load (Sec 7.1) 

This technique allows power 
saving realisation by switching 
off optical paths in the front-
haul and unused DUs when 
network traffic load is low. 

Medium-term 

Open RAN (Sec. 7.2) 

The Open RAN MoU has 
defined EE targets for O-RUs 
in both loaded and unloaded 
conditions, for benchmarking 
Open RAN O-RU with traditio-

nal RAN. 

Medium-term

New 
technologies

Front-end Adaptivity 
for Increased Energy 
Efficiency (Sec. 4.4) 

This architecture allows 
to select suitable modula-

tion scheme and transceiver 
front-end based on data rate 

requirements and spectral 
availability to reduce energy 

consumption. 

Long-term 

A Resource-Aware Ma-
chine Learning Frame-

work (Sec. 8.4) 

The output AI model requires 
37% of the FLOPs needed by 

the training process of the ori-
ginal one, leading to significant 
savings in energy consumption 

during training 

Long-term 
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10  LIST  
OF ABBREVIATIONS

3GPP Third Generation Partnership Project 

AI Artificial Intelligence  

AAU Active Antenna Unit 

ADC Analog-to-digital converter  

API Application Programming Interfaces  

ATIS Alliance for Telecommunications Industry Solutions 

BBU Baseband Unit 

BO Bayesian optimisation 

BS Base Station 

CCSA China Communications Standards Association 

CSI Channel State Information 

DC Direct Current 

DL Downlink 

DRX Discontinuous Reception 

DTX Discontinuous Transmit 

EC Energy Consumption 

EE Energy Efficiency 

EIRP Effective Isotropic Radiated Power 

ETSI European Telecommunications Standards Institute 

gNB Next Generation Node B 

ICT Information and Communication Technology 

ITU-T International Telecommunications Union Telecommunication 
Standardisation Sector 

KPI Key Performance Indicator 

LSTM Long Short-Term Memory 

MIMO Multiple Input Multiple Output 

MNO Mobile Network Operator
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MoU Memorandum of Understanding

NES Network Energy Savings

NGMN Next Generation Mobile Network

NR New Radio

O-RAN Open RAN

PA Power Amplifier

PRB Physical Resource Block

pRRU pico Remote Radio Unit

QoS Quality of Service

RAN Radio Access Network

RAS Remote Azimuth Steering

RF Radio Frequency

RIB Radiated Interface Boundary

RRU Remote Radio Unit

RU Radio Unit

SCell Secondary Cell

SIB System Information Block

SINR Signal-to-Interference-plus-Noise Ratio

SSB Synchronization Signal Block

SVR Support Vector Regression

TRP TX/RX point

TS Tabu Search

TTI Time Transmission Intervals

UE User Equipment

ViT Visual Transformers

VNF Virtualised Network Function

WUS Wake Up Signal

ZO Zeroth order
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