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ABSTRACT:  
SHORT INTRODUCTION  
AND PURPOSE OF  
DOCUMENT

This document leverages the foundations of an autonomous system [1], applicable to a service-based architecture [2] 
to further examine the forward-looking considerations for an autonomous system architecture framework, as the next 
generation End-to-End (E2E)  system continues to evolve.

The functions and characteristics that embody the capabilities of an E2E autonomous system for network automation 
are examined in terms of a high-level framework. Artificial Intelligence/Machine Learning (AI/ML) models [3] of cognition 
and application aspects are pivotal ingredients within an autonomous system. The term "system" in this context is an 
abstraction, which generalises and subsumes details such as specific networks, protocols, and implementations, in 
terms of high-level requirements, perspectives, and insights.

Network slicing serves as a foundational building-block, for a realisation of flexible, granular, and optimised allocation 
of system resources, such as computing, networking, and storage, to support various deployment scenarios, and 
service innovation. An automation of network slicing in an E2E system imbued with autonomous system capabilities 
is a significant value proposition, where an autonomous system self-adaptively manages complexity in a virtualised 
environment, without human intervention. The application of assorted AI/ML models, together with continuous training, 
integration, and delivery, facilitate continuously updated autonomous system behaviours to suit diverse deployment 
arrangements and services.

The autonomous system architecture framework is intended to serve as guidance in the development of inter-operable 
and market enabling specifications, for a continuing advancement of an automated and self-adaptive 5G ecosystem of 
heterogeneous access, virtualisation, forward-looking service enablers, and emerging usage scenarios.
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01 INTRODUCTION  
The purpose of this document is to infer and delineate a high-level framework of architectural 
principles and requirements. that yield network automation and autonomy based on Artificial 
Intelligence/Machine Learning (AI/ML), for system-wide network and operational automation, without 
human intervention. Considerations and requirements that build and advance the foundational 
aspects are examined, in terms of system-wide aspects and insights, for further understanding, 
usage scenarios, and specifications.

With the continuing evolution of the 5G Advanced ecosystem [2], this document advances and 
leverages the foundational requirements in the initial phase of the autonomous system architecture 
framework [1]. The advancements provide system-wide guidance and direction for standards 
development with respect to an articulation of interoperable capabilities, and services, associated 
with an autonomous system oriented network automation. It is anticipated that the 5G Advanced 
ecosystem evolution will be characterised, in terms of a convergence of diverse access technologies, 
virtualisation, hybrid clouds, together with high levels of decentralisation and distribution, to 
facilitate emerging services, with a customisable, user-centric experience. 

With these intrinsically interdependent requirements, an accrual of the associated system-wide 
complexity is expected, which would need to be managed and scaled effectively, through the use 
of an autonomous system architecture framework for system-wide network automation.
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02 EXPECTED BENEFITS 
AND COMMERCIAL  
IMPACT
The management of complexity and system performance optimisation are significant benefits, 
realised through an application of autonomous system constructs for realising network automation. 
As a result, it is anticipated that network automation will serve as a foundational catalyst for enabling 
service innovation, evolution, support for diverse business models, and flexible deployment.

At the same time, network automation facilitates a minimisation of operation and maintenance 
expenditures, as well as enabling continuous improvements in configuration, integration, upgrades, 
service experience, personalisation, fault mitigation and management. Commercial beneficiaries of 
network automation include Network Service Providers (NSPs) (e.g., operators), Service Providers 
(SPs) (e.g., Verticals), and users (e.g., human and machine interfaces).

An autonomous system rendered network automation framework, provides a holistic framework 
for a dynamic self-adaptation of the system to a given operating environment, while satisfying 
diverse Key Performance Indicators (KPIs), personalisation of services, and various Key Value 
Indicators (KVIs), associated with social, economic, and environmental aspects. This framework 
provides architectural considerations for enabling the requisite operational capabilities to meet 
the growing system and service demands that exceed human response limits, as a result of the 
increasing system and service complexity, which accrue with continuing technological advances 
(e.g., virtualisation/softwarisation, network distribution, and decentralisation).
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03 DEFINITIONS  
AUTONOMIC FUNCTION
A function with intelligent and cognitive attributes, within an autonomous system, which operates 
through closed-loop feedback of a response for a given stimulus, for an automatic and adaptable 
behaviour (subject to input governance policies and configuration), and is able to derive all the 
necessary information, through the discovery of knowledge within its environment.

AI AND ML MODEL
A model representing mathematical algorithms that learns using data and input consisting of 
human expertise to generate an effective and optimised decision, in the presence of dynamic 
change, when the model is provided with actual information of a corresponding nature for which 
the model was designed.

KEY PERFORMANCE INDICATOR (KPI)
This refers to a measurable metric (e.g., data rate, spectral efficiency, latency etc.) that reveals the 
performance of a system or entity with respect to a specific objective associated with the system 
or entity, for obtaining insights related to the performance of the system or entity.

KEY VALUE INDICATOR (KVI)
This refers to a metric for monitoring and validating the impact of prominent societal, economic, 
and environmental values [3] on emerging technologies and vice-versa, to study and shape the 
development direction of technologies, guided by balanced and holistic considerations.

MACHINE LEARNING MODEL
A model created by a machine through an application of learning techniques on input data. The 
model may be utilised to generate predictions (e.g., regression, classification, clustering etc.) on 
untrained or raw input data. Encapsulation of the model may be performed with software (e.g., 
within a virtual machine or container). The learning techniques span a broad variety of algorithms 
(e.g., learning of a function that maps input data into corresponding output data).

MACHINE LEARNING DATA MODEL
This pertains to a description of the data used for data handling in machine learning applications. 
The data model may specify the data exchanged between an ML overlay network (e.g., virtualised 
network) and an ML underlay network (e.g., physical network). The data model includes data 
structures as well as a semantic description, while collecting data from an ML underlay network, 
and while applying the output from the ML overlay network to the ML underlay network [4].
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This chapter provides a brief overview of an 
autonomous system context and background 
for self-adaptive automation, for guiding 
a consistent understanding of high-level 
considerations, without reference to specific 
implementations. 

The scale and complexity of next-generation 
networks are expected to continue to rise, 
to enable higher levels of sophistication 
with respect to the end-to-end system and 
services to meet the demands of higher 
orders of personalised human experience, 
as well as higher orders of end-to-end 
system optimisation, resource utilisation 
(e.g., networking, spectrum, computing, 
and storage). These emerging directions 
demand an overlay of autonomous system 
constructs, consisting of decentralised and 
distributed intelligence, with feedback control 
loops, for a realisation of self-Configuring, 
Healing, Optimising and Protecting (CHOP) 
automation.

As shown in Fig. 1, the autonomic principles 
are applied and embedded within an end-to-
end system, consisting of distributed AI/ML 
model oriented cognitive functions, yielding

self-CHOP network automation. This self-

04 AUTOMATION  
AND AUTONOMOUS  
SYSTEM CONTEXT

CHOP system-wide behaviour leverages 
a variety of cooperative technologies to 
sustain a system-wide equilibrium under 
changing conditions, in terms of effectively 
satisfying the performance objectives 
and a personalisation of services, while 
dynamically and flexibly interacting, with the 
operating environment.

The autonomous system constructs (e.g., AI/
ML model assisted feedback control loops) 
within the end-to-end system are expected 
to be layered, with more complexity and 
scope management towards the network 
core, while autonomous system constructs 
at the network edges (e.g., distributed radio 
networks) are expected to satisfy ultra-
low latencies. These autonomous system 
constructs are anticipated to be optimised 
for energy efficiency, in terms of training and 
updating the AI/ML models. A framework of 
autonomous system constructs is expected 
to operate within a given administrative 
domain, as well as across cooperating 
administrative domains in Federated 
Learning (FL) arrangements [5]. In such a 
framework, the nature of the constituent AI/
ML models is subject to human governance, 
through the related governance interfaces

Autonomous System

Autonomous architecture 
framework aspects for 
network automationSystem Model

Management of Complexity
Management and Orchestration
AI/ML models
Anomaly detection and prevision
Cooperative Technologies
Use cases

Fig. 1:  Autonomous system context

Principles

Guiding concepts

System

Behaviours

Outcome

Autonomic

Closed-loop feedback 
and intent constructs

Autonomous System
(Embodiment of autonomic principles,  

with qualities of autonomy that exhibit  
autonomous behaviour)

Self-CHOP behaviours

Network Automation
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to ensure the intended behavioural and 
performance objectives of the constituent 
autonomic functions, while remaining 
compatible with a broader social and 
environmental context.

The use of distributed autonomous 
system constructs over a service based 
architec tural framework , is pivotal 
since it opens a realisation of innovative 
business models and diverse deployment 
choices, across cooperating and diverse 
administrative domains that allow multi-
tenant and multi-service considerations. 
While system-wide flexibility, resource 
granularity, and functional portability are 
intrinsic characteristics of a service-based 
architecture, the performance demands 
combined with an agile cooperation demand 
across distributed resources, within and 
across domains, together with a maintenance 
of intended performance and service 
objectives, contribute to the rising levels 
of system-wide complexity, as the system 
evolves. 

Consequently, the conventional and rigid 
arrangements of system and service 
management are inadequate, and thereby 
underscore the necessity of an overlay 
of a distributed autonomous system 
over a service-based and network sliced 
architectural framework. The self-CHOP 
attributes that are intrinsic to the behaviour 
of autonomous system constructs are 
essential for self-adaptive automation, 
which then demand the related studies 
and creation of system-wide interoperable 
specifications.

4.1  MANAGEMENT  
OF COMPLEXITY
 
Management of complexity, through the 
use of autonomous closed-loop feedback 
constructs is pivotal for self-CHOP 
network automation. This type of network 
automation is beyond simple, piecewise, and 
programmatic automation, which is limited 
in terms of network automation adaptation 
to dynamic conditions within and in the 
environment in which the entire system 
operates. Some of the main aspects and 

benefits, associated with the management of 
complexity, through the use of autonomous 
system constructs for network automation, 
from an end-to-end system perspective, 
include the following:

•  Self-CHOP network automation of 
various tasks and operations, through 
the elimination of manual tasks, and 
an avoidance of human errors, while 
providing a consistent and reliable 
configuration across the network.

•  Optimisation of system-wide resource 
allocation, such as bandwidth allocation, 
routing decisions, and system capacity 
planning.

•  Performance enhancement, in terms 
of adaptability to service demands, 
reliability, availability, resource utilisation 
efficiency, energy efficiency, service 
experience etc.

•  Cost reduction through an automation 
of system operations and maintenance, 
including staffing optimisation with 
relevant skills, fault isolation, resilience, 
and mitigation.

•  Continuous improvement through an 
automation of network configuration, 
integration, upgrades, and service 
experience. This facilitates a faster 
deployment of new services, enables 
rapid testing and validation, and supports 
iterative development and deployment 
cycles.

•  Personalisation and service innovation, 
through an adaptation of the network 
to satisfy individual user requirements. 
This allows for customised service 
provisioning, user-specific configurations, 
and tailored experiences, enhancing 
customer satisfaction, and driving service 
innovation

•  Cognitive capabilities imbued by AI/
ML algorithms that enable self-CHOP 
behaviours of the system.

•  Commercial beneficiaries consist of 
diverse stakeholders, including Network 
Ser vice Providers (NSPs), Ser vice 
Providers (SPs), and end-users. 

NSPs and SPs can achieve operational 
efficiency, accelerate service delivery, and 
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explore new business opportunities. 

End-users benefit from improved service 
quality, faster response times, and 
personalised experiences.

As a result of the diverse and interdependent 
characteristics inherent in emerging 
systems, the management of complexity 
is also a signif icant requirement for 
sustainable system behaviours. The 
growth in complexity follows a continuing 
advancement of system features, and 
capabilities, which are necessary to meet 
the diverse demands of continuing service 
innovation. The management of complexity 
is an indispensable requirement as 
networks, services, and devices continue to 
evolve, where a self-adaptive operational 
optimisation of system performance, 
scalability, and sustainability, enable a 
personalised service experience.

4.2  NETWORK EVOLUTION

Network evolution refers to the continuous 
improvement and adaptation of networks 
to meet the requirements of evolving  
technologies and services. This includes 
improvements in terms of ubiquitous 
coverage, adaptable coverage, f lexible 
resource allocation, diverse types of 
access, diverse deployment scenarios, 
decentralisation, and distribution, together 
with the emerging demands of service 
innovation.

The transformation of the architectural 
model of an emerging end-to-end system, 
based on a virtualised service-based 
architecture, is subject to continuing 
advancements that facilitate higher levels of 
granularity and flexibility to meet the rising 
demands of diverse latency, data rates, 
coverage, capacity, and the quality of service 
experience requirements. This naturally 
entails a continuous accrual of complexity, 
which follows this arc of increasingly 
sophisticated system wide capabilities. 

Consequently, an effective method for 
managing increasing levels of complexity 
is offered through autonomous system 
constructs, astutely distributed throughout 
an evolving E2E system, which facilitates 

zero-touch [6] operation, and a sustenance of 
system wide equilibrium, while dynamically 
adapting to its operating environment, 
throughout the lifecycle of the system. The 
prominent aspects of network evolution 
span:

•  Diverse access modalities (e.g., terrestrial, 
non-terrestrial access, licensed and 
unlicensed spectrum)

•  D e ce n t ra l i s e d  a n d d is t r ib u te d 
architectural models, with cloud-native 
functions

•  AI/ML native functions, with virtualised 
and network sliced allocation of 
networking, computing, and storage 
resources.

The abstraction of the networking, 
computing, and storage resources, in a 
virtualised service-based architectural 
model, provides a flexible slicing [7] [8] 
of the E2E system resources, across the 
radio, transport, core, management, and 
application layers, as a prominent building 
block capability of network evolution 
through the next-generation. A logical 
partitioning of the E2E system resources into 
a customisable and isolated network slices 
provides a virtualised building block, with 
varying levels of granularity to be effectively 
leveraged by an overlay of autonomous 
system constructs. The autonomous system 
constructs imbue self-CHOP characteristics 
to manage complexity, while enabling an 
intelligent management and orchestration 
of the requisite network slices to suit service 
demands dynamically and automatically, 
with optimised resource utilisation.

4.2.1  NETWORK OPTIMISATION  
AND SCALABILITY

An enhancement of performance, and 
resource utilisation efficiency facilitate the 
realisation of network optimisation and 
scalability of the E2E system. This includes a 
self-adaptive automation of techniques, such 
as traffic engineering, load balancing, and 
diverse service quality demands. Scalability 
is promoted through interoperable and 
extensible system design capabilities that 
accommodate increasing traffic demands 
that follow emerging system demands. 
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Autonomous system constructs augment 
these attributes, through self-adaptive 
automation, for dynamically adjusting the 
requisite network parameters, based on 
real-time conditions, while flexibly ensuring 
an optimised and sustainable system 
performance. The AI/ML models, which 
are embedded within autonomous system 
constructs, facilitate an optimisation of 
network resource utilisation, such as radio 
channel bandwidth allocation, networking, 
computing, and storage allocation, traffic 
routing etc., ensuring both an efficient and 
scalable allocation of system resources.

The network slicing of resources in the E2E 
system promotes a requisite granularity 
of customisable, optimised, and scalable 
allocation of resources to suit the diverse 
demands of emerging services, driven by 
innovative usage scenarios, over a service-
based autonomous system framework.

4.2.2  OPERATIONAL OPTIMISATION

The streamlining of the network and 
system operations, requires an effective 
management of complexity offered through 
an E2E application of autonomous system 
constructs, for a self-adaptive and zero-touch 
automation of the network operations, for 
the given system environment conditions, 
service requirements, and intended system 
performance objectives.

The network operational objectives include 
a satisfaction of requirements such as 
device provisioning, software upgrades, 
configuration management, billing and 
charging models, minimisation of faults, 
and an avoidance or minimisation of human 
intervention for system operations. An 
adoption of autonomous system constructs 
throughout the E2E system, promotes these 
objectives, including a reduction of time to 
market, improvement of sustainability and 
evolutionary extensions, reduction of the 
total cost of ownership, and advancements in 
the efficiency and look-ahead capabilities of 
system management and orchestration for 
effective anomaly detection and prevision.

The cognitive functional capabilities imbued 
within autonomous system constructs, 
enable a plurality of operational scenarios, 
to flexibly suit business and deployment 
objectives, which yield an E2E system 
transformation towards the support 
of innovative use cases, together with 
context-aware and situation-aware self-
adaptive capabilities. These directions 
promote network programmability, energy 
efficiency, intelligence at the network edges 
for an augmented service experience, high 
availability, and advanced reliability, in highly 
disaggregated network configurations, with 
high levels of autonomy and zero-touch 
automation.

4.2.3  FULFILMENT AND ASSURANCE

The management and orchestration 
subsystem within the E2E system, imbued 
with autonomous system constructs, self-
adaptively manages the cognitive network 
functions, embedded with requisite AI/
ML models, and the system wide resource 
allocation. The closed-loop and self-adaptive 
nature of autonomous system constructs 
facilitate the network slice orchestration 
with a set of objectives. The main objectives 
include the provisioning of the network 
slice, performance assurance and fulfilment, 
intent realisation, automated Service Level 
Agreement(SLA) monitoring, alignment 
with expected KPIs, Quality of Service (QoS) 
etc. In this regard fulfilment refers to the 
process of delivering customisable services 
to customers, including service activation, 
configuration, and provisioning. On the 
other hand, assurance refers to monitoring, 
troubleshooting, and maintenance of service 
quality. 

Autonomous system constructs promote 
intelligent and self-adaptive fulf ilment 
and assurance processes, which are 
self-adaptively optimised to ensure 
ef f icient service delivery and timely 
fault resolution. Zero-touch automation 
simplifies service fulfilment processes, 
through an autonomous automation 
of service provisioning, activation, and 
configuration, ensuring faster service 
delivery and a sustainable improvement 
of customer satisfaction. The autonomous 
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system constructs, promote a proactive 
fault detection, anomaly detection, and 
performance monitoring, allowing for a rapid 
fault resolution and a proactive assurance of 
service quality

4.2.4  NETWORK AS A SERVICE (NAAS)

Network as a Service (NaaS) is an approach 
that provides network infrastructure and 
services on-demand. It allows organisations 
to access and use network resources, 
such as bandwidth, routing, and security, 
without owning or managing the underlying 
infrastructure. NaaS offers f lexibility, 
scalability, and cost-effectiveness.

The service-based architectural framework 
decouples the software from the underlying 
hardware, together with a decoupling of the 
functionality from the location, promoting 
f lexible deployment strategies to suit 
diverse business and deployment models. 
Beyond this useful abstraction enabled by 
virtualisation, network programmability is 
a significant inherent capability, where the 
control, data, and management planes can 
be independently scaled and programmed 
to optimise system-wide operations, and 
network evolution. Virtualisation consists of 
both Network Functions Virtualisation (NFV)
[9] and Software Defined Networking (SDN)
[10], which enable the following benefits:

•  Autonomous framework mediated control 
plane and data plane

•  Decoupling and programmability of 
control and data planes, across the 
network and devices

•  Agnostic behaviours between the network 
infrastructure and the application.

Automat ion enables the dynamic 
provisioning and management of network 
services, allowing users to easily access and 
consume network resources as a service. AI/
ML algorithms assist in resource allocation 
and scheduling, for optimising service 
delivery and ensuring efficient utilisation of 
network resources.

4.2.5  NETWORK SIMPLIFICATION

The embodiment of AI/ML modalities, 
together with network programmability (e.g., 
network slicing), promotes improvements 
in an autonomous system for managing 
complexity. This in turn yields enhancements 
in network reliability, stability, scalability, and 
sustainability, in terms of fault recovery and 
a faster convergence towards the intended 
performance targets and service experience 
expectations.  

In other words, network evolution and 
adaptability to changing conditions, with 
respect to operational, business, and 
deployment aspects are simplified through 
the self-CHOP behaviours offered by an 
autonomous system. These self-CHOP 
behaviours offered by an autonomous 
system facilitate a simplif ication of 
network evolution in terms of optimising 
configurations, anomaly prevision/detection, 
and dynamically adjusting to growth/
modifications, while promoting avenues 
for security and privacy. These directions 
lead to a simplification of architectural 
considerations, for realising a more efficient 
routing and resource utilisation, as well as 
for ensuring network adaptability to optimal 
information pathways, resulting in an 
overall network performance and efficiency 
enhancement.

4.3  SERVICE EVOLUTION

An application of autonomic principles 
facilitates a self-adaptive evolution of innovative 
services, aligned with configured intents in 
the autonomous system, as it interacts with 
its operating environment. At the same time, 
the autonomous system dynamically adjusts 
to meet the requisite user-centric service 
demands, characterised in terms of KPIs and 
KVIs. This facilitates a continuing enhancement 
of interdisciplinary services that span diverse 
areas of personalisation and optimisation of 
user experience.

Examples of a variety of innovative services, 
characterised in terms of user-centric Quality 
of Experience (QoE), and application-specific 
QoS, include, while not limited to the following 
examples of broad categories:
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• Telemedicine, e-Health

• Smart agriculture

• Smart industry

• Smart city

• Sensing and communications

• Intelligent transportation

The autonomous system operates over a 
virtualised service-based framework, which 
provides flexibility in terms of decentralised 
and distributed system deployment 
arrangements. These assorted choices of 
deployment arrangements, together with 
advanced intelligent devices (e.g., extended 
reality, wearables), provide a framework for 
service evolution. Cloud-native functions 
render functional portability, in concert 
with network slicing to virtually carve out 
and isolate end-to-end system resources 
(e.g., networking, spectrum, computing, and 
storage resources).

4.3.1  CUSTOMISABLE  
AND PERSONALISED SERVICES

The automation of customisation and 
personalisation hinging on system intents 
and user-centric preferences, enable flexible 
and granular choices to craft service features, 
configurations, and experiential orientations 
(e.g., satisfaction of QoE, KPIs, and KVIs). The 
application of autonomous system constructs 
is essential for automatically satisfying these 
diverse requirements, while simultaneously 
minimising the potential adverse impacts of 
faults or other impairments in the system, and 
allowing for a graceful degradation, and service 
recovery. 

These benefits span a wide variety of business 
and deployment models, since the distributed 
and cooperative autonomous system constructs 
have the quality of self-sovereignty, while 
promoting cooperation, which naturally inhibits 
a spread of fault impacts. The embedded AI/ML 
models in the autonomous system constructs, 
which consist of autonomic functions, perform 
the requisite analysis of user data and behaviour, 
to align with personalised recommendations, 
and to augment the user experience.

4.3.2  ZERO-TOUCH OPTIMISATION

The self-CHOP characteristics offered 
through autonomous system constructs, 
distributed across the end-to-end system, 
enable a resource optimised and zero-touch 
system wide automation. This enables an 
efficient utilisation and dynamic adaptation 
to the changing network demands in real-
time.

The AI/ML models within the distributed 
autonomous system constructs, provide 
an intelligent analysis of the network and 
system data to dynamically adjust the service 
parameters, while optimising resource 
utilisation and sustaining an intended service 
performance.

4.3.3  EXTENDED REALITY (XR)

An Ex tended Reali t y ( XR) ser v ice 
encompasses technologies that include 
Virtual Reality (VR), Augmented Reality (AR), 
and Mixed Reality (MR). The evolution of this 
class of services consists of enhancements of 
XR service experience, which is characterised 
in terms of demanding performance 
objectives, such as high reliability, low-
latency, high bandwidth, an efficient delivery 
of content, sometimes under resource 
constrained conditions (e.g., device form 
factor, processing capabilities, battery life, 
number of radio receivers etc.). Immersive 
and interactive behaviours of XR services are 
expected to meet the required QoE (e.g., KPI, 
KVI)

The AI/ML models within the distributed 
autonomous system constructs, assist an XR 
service to meet the desired performance and 
experiential objectives that yield an attractive 
and immersive experience. The underlying 
self-adaptive system-wide automation 
fabric is pivotal for reliable connectivity and 
efficient real-time communications that 
promote and sustain an enhanced user-
centric XR service experience.
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4.4  DEVICE EVOLUTION

The advancement of device functionality, 
diversity, form-factors, and capabilities, 
served by an emerging network and system, 
are pivotal for an enablement of service 
evolution and experience. These compelling 
directions are an intrinsic motivator for 
managing the associated rising levels of 
complexity, both at the device and at the 
system level, within which the device is 
designed to function and operate effectively.

A s the s ys tem wide complex i t y 
proportionately follows these device 
advancements, to suit the increasing levels 
of service sophistication, including AI/ML 
model transfer , sensing and communication 
capabilities etc., an application of self-CHOP 
autonomic principles, throughout the system 
is a pivotal requirement to meet the requisite 
KPIs.

The self-CHOP oriented automation 
simplifies the device management processes, 
such as device configuration, monitoring, 
and maintenance, by minimising or avoiding 
human intervention. This augments the 
consistency of device operation behaviours, 
while ensuring the objectives of compatibility, 
interoperability, privacy, and security of the 
devices to align with the evolving network 
and system requirements. The requisite AI/
ML models, within the autonomous system 
framework cooperate to analyse device data 
to identify any performance degradation, 
detect anomalies, predict impending 
anomalies, optimise device configurations, 
and to enhance the effectiveness of device 
management.
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05 AUTONOMOUS  
SYSTEM MANAGEMENT 
AND ORCHESTRATION
The emerging, distinct, and divergent 
requirements of 5G Advanced system 
and beyond services, spanning, the broad 
categories of eMBB, mIoT, and URLLC, 
consist of foundational design principles 
and technologies. The prominent design 
principles that are intrinsic to a service-based 
framework imbue the beneficial attributes 
of agility, and flexibility, together with 
distributed cloud-native functionality. These 
design principles leverage architectural 
constructs, such as network slicing, 
decoupling of the control plane and user 
plane, Software Defined Networking (SDN), 
Network Functions Virtualisation (NFV), 
distributed edge computing, connectivity 
convergence (e.g., terrestrial, non-terrestrial, 
diverse spectrum access etc.). 

These evolutionary directions imply a 
corresponding demand for continuing 
improvements in system-wide performance, 
energy efficiency, and resource utilisation 
efficiency. Consequently, these aspects 
contribute to a corresponding rise in system 
wide complexity, which underscore the 
significance of requiring a self-adaptive 
system-wide capability. This type of self-
adaptive automation can be realised 
through autonomous management and 
orchestration, which is anticipated to 
advance with an evolution of system and 
services, to effectively and efficiently manage 
both system-wide scale and complexity. 
System-wide self-adaptability implies a 
dynamic and context-aware automation 
of system capabilities to realise anomaly 
detection, intent-based behaviours, and 
anomaly prevision, while satisfying system 
performance objectives, and diverse service 
demands.

A harnessing of autonomic principles, to 
align with customisable business objectives, 

based on initial conditions, such as system-
wide and network operational goals, intents, 
policies, and configuration information, 
promotes self-CHOP capabilities. This 
promotes a realisation of zero-touch 
automated operations, which in turn 
facilitate autonomous management and 
orchestration. The level of autonomic 
behaviours spans from lower levels of 
automation with some human intervention 
towards zero-touch automation, which 
characterises a completely autonomous 
system.

The self-adaptability and self-optimisation 
characteristics of an end-to-end system, 
including user equipment, demand a 
distribution of AI/ML modalities that yield 
distributed intelligence for an efficient 
and predictive allocation of networking, 
computing, and storage resources, to 
satisfy system performance and service 
demand objectives. Autonomous system 
management and orchestration play a 
significant role for the realisation of these 
objectives. Contextual self-adaptability of 
the end-to-end system leverages closed 
feedback loops that utilise the system inputs 
consisting of a monitoring and analysis of 
information to formulate decisions and 
actions to yield zero-touch automation. 

This process facilitates a continuous self-
adaptation of the end-to-end system for 
optimised behaviours, while operating in a 
given dynamic and changing environment. 
The autonomous nature of this process is 
constrained by intents and policies, where 
AI/ML modalities (e.g., discriminative, and 
generative artificial intelligence) serve as 
a catalyst for intelligent management and 
orchestration for a realisation of zero-
touch automation. The discriminative AI/
ML modalities harness the conventional 



16

methods of AI/ML, such as supervised, 
unsupervised, and reinforcement learning 
methods, while the generative AI/ML 
modalities create new content, such as 
through the use of Large Language Models 
(LLMs), with appropriate relevance to a given 
domain (e.g., telecommunications etc.).

Fig. 2 , illustrates the context of a closed-loop 
and automated decision-making process for 
yielding self-adaptive end-to-end system 

behaviours. The embedded and diverse AI/
ML modalities augment the performance, 
scalability, resource utilisation efficiency, 
complexity management and fault resilience 
of the system, while rendering a sustainable 
and personalisable service experience. 
Within the context of Fig. 2, an illustrative 
representation of Machine Learning/Deep 
Learning (ML/DL) and update process and 
revision, based on changing conditions 
within the system as it operates in a given 
environment, is shown in Fig. 3.

Derivation of insights 
through an analysis 
of the observed 
information, associated 
with the managed 
resources

Data gathering through 
an observation of the 
managed resource 
behaviors, faults,  
and performance

Autonomous and 
cognitive decision-
making

Analytics Cognition

Decide

Orchestration

Guide

Data Gathering

Inferencing

Automated lifecycle 
management and 
control of the 
workflows, and states of 
the managed resources

Fig. 2: Autonomous management and orchestration context

Fig. 3: Example of ML/DL update process and environment
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5.1  AUTONOMOUS SYSTEM 
AUGMENTATION
 
The self-adaptive characteristics of an 
autonomous system, hinge on the integrity 
of a model representation of the system 
in terms of the intents, policies, business, 
and deployment objectives that satisfy the 
desired system performance and service 
experience goals. However, the quality of 
self-adaptation of the system depends 
on the accuracy of the closed-loop model 
representation that reflects the system 
requirements and goals. This implies that 
any gaps in the system goals, as a result 
of changing system operation conditions, 
or incomplete requirements, would need 
to be filled, so that the system model is 
continuously tuned to sustain self-adaptive 
behaviours.

Both Discriminative AI (DAI) and Generative 
AI (GAI) imbued functions that are utilised in 
an end-to-end manner across the system, 
augment the self-CHOP characteristics of 
autonomous behaviours of the system. GAI 
harnesses Large Language Models (LLMs) 
that leverage deep learning schemes to 
generate natural language content, based 
on an inference of context, structure, and 
semantics for a given dataset [11]. The 
various deep learning schemes include 
Recurrent Neural Networks (RNNs), 
transformers (e.g., GPT, BERT etc.) [12], Long 
Short-Term Memory (LSTM) networks etc. 

Attention schemes are leveraged in a 
transformer, which has exhibited an efficient 
performance with limited training, using 
domain specific datasets, which implies its 
potential to be tuned to the requirements 
of a given autonomous telecommunications 
deployment configuration to enable self-
CHOP operations.

The adaptability of LLMs contribute to their 
relevance and applicability to enhance 
autonomic behaviours for system-wide 
automation and resource optimisation 
across any domain, including complex 
telecommunication systems, as well as a 
plethora of emerging and innovative use 
cases. The use of Variational Auto Encoders 

(VAEs) [13]  within an LLM facilitates an 
associated deep learning scheme for 
removing noise and anomalies in the content 
generation process.

Discriminative and generative intelligence, 
are broadly differentiated as shown below: 

• DISCRIMINATIVE: 

 ML algorithms for modelling and 
classification of datasets.

•  GENERATIVE: 

 Deep ML model trained on datasets for 
creating new content, based on GANs 
(Generative Adversarial Networks), 
VAE (Variational Auto Encoders) and 
Transformers.

The leveraging of both DAI and GAI is 
pivotal for a continuing advancement of 
autonomous system management and 
orchestration. The transformer-based 
models include LLMs, which are trained 
on large volumes of unstructured data to 
enable an LLM to perform a variety of tasks, 
including summarisation, classification, 
translation, prediction, content generation 
etc., based on a corresponding query to 
invoke a response from the LLM. A few 
commercialised examples of LLMs include 
Google Gemini, Open AI GPT etc.

The use of generative AI, while beneficial 
in terms of augmenting human creativity 
through automation, has challenges 
that impair the relevance and accuracy 
of generated content, resulting from 
hallucinations, training biases, and ethical 
aspects. Additional challenges with 
generated content pertain to potentially 
malicious prompts to a generative AI model 
that exposes confidential information, 
intellectual property information, and 
adverse impacts to privacy aspects. These 
challenges require to be effectively mitigated 
through an embodiment of curated, reliable 
data sets, applicable to specific business and 
deployment domains, with appropriate levels 
of security and privacy.
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An integration of Large Language Models 
(LLMs) and Generative AI (GAI) with the 
autonomous system management and 
orchestration provides the wherewithal for 
an augmentation of self-CHOP characteristics 
of an end-to-end autonomous system for 
zero-touch automation. Both LLM and GAI 
serve as cooperative technologies for an end-
to-end autonomous system, to effectively 
manage and scale a continuing rise in 
system-wide complexity, as the ecosystem 
continues to evolve.

5.1.1  LARGE LANGUAGE MODEL (LLM) 

The advent of LLMs, which is a foundation 
for GAI is poised to have a profound impact 
on enhancing system efficiencies through 
autonomous automation, in next generation 
telecommunication systems, and across 
various inter-disciplinary service domains. 
The conventional categories of artificial 
intelligence modalities that are exclusively 
based on algorithmic methods (e.g., 
supervised, unsupervised, reinforcement 
learning, deep learning, time series etc.) 
are referred to as the methods of DAI 
which discern specific and rules-based 
patterns in the observed and relevant data 
sets for deriving inferences and optimised 
actions. While DAI continues to be applied 
successfully across various domains, in terms 
of classical machine learning characteristics, 
such as clustering, classification, regression, 
reducing the data set dimensionality 
for improved performance, and pattern 
recognition, it is deficient with respect 
to interpreting nuances in the observed 
data sets, which could be significant in 
complex and practical scenarios, such as in 
telecommunication systems.

The advent of GAI harnesses LLMs embedded 
within an autonomous system, through 
the use of natural language processing 
interfaces, where the data sets and prompts 
are tuned to suit an intended set of system 
behaviours and deployments choices [14]. 
The applicability of LLMs is significant across 
different aspects of the system, such as in 
the case of network design, fault diagnosis, 
network configuration, network security. 
Queries, through the use of prompts are 
relevant to configure and tune the network. 

As an example, a query for network 
configuration could be presented, via a 
prompt to the system, such as:

“There is a new 5G base station deployed 
and equipped with a massive MIMO 64T/64R 
antenna. It covers the Golf National in Saint-
Quentin-en-Yvelines for the Paris 2024 
Olympics, with a given identifier. Please set its 
engineering parameters and configure and 
interconnect the 5G base station appropriately”

LLMs are poised to augment autonomous 
automation, across diverse network aspects 
and operations, such as Construction, 
Planning, Optimisation, Maintenance, and 
Resource Management. The promise of GAI 
that utilises telecommunication specific LLMs 
dwells in the arena of enhancements, such 
as in the wireless communications system 
design, planning, and optimisation, such 
as for deriving insights and corresponding 
interactions for optimisation, based on an 
understanding of dynamic wireless link 
conditions, propagation characteristics, 
requisite signal power adjustments etc. As 
compared to more general purpose LLMs, 
the telecommunications arena is expected 
to utilise different sizes of language models, 
such as Small Language Models (SLMs) (e.g., 
~ 1 Billion parameters), Medium Language 
Models (MLMs) (e.g., ~10 Billion parameters), 
which are relatively much smaller than an 
LLM(e.g.,~ 100 Billion parameters) which 
is also more complex, computationally 
demanding, with increased costs around 
its training and deployment. Consequently, 
SLMs and MLMs are especially suitable at the 
distributed network edges of an autonomous 
system, where the size of the network and 
resources are limited.

A few examples of an LLM augmented 
segments of an autonomous system, include: 

• Service Provisioning, where network 
operators would be able to seek 
information on the identification of 
valuable business areas for Fixed Wireless 
Access (FWA) end users.

• Maximise the value of multiple indicators 
(e.g. KPIs) such as an improvement in 
energy efficiency while maintaining an 
overall QoE.
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• Enablement of text-based or voice-based 
network troubleshooting queries, such as: 
“What are the reasons for the poor network 
quality offered to cloud video streaming 
services?

Examples of prominent instruments of GAI, 
within an autonomous system for advancing 
and tuning self-CHOP qualities, leveraging 
different types of capabilities include:

• CHATBOT

- Focus on conversations and information 
retrieval

- Capabilities to answer FAQs, provide 
customer support, and collect data.

- Decision-making based on responses

• COPILOT

- Focus on collaboration and assistance 
with specific tasks.

- Capabili t ies to generate content 
suggestions, translate languages, answer 
complex questions, and offer feedback.

- Suggestive decision-making 
recommendations, providing options 
and insights, while enabling the network 
operator to make substantive decisions 

• AGENTS

- Focus on autonomous learning and 
actions

- Capabilities to make decisions, perform 
tasks, adapt to situations, and interact 
within a given autonomous system 
operating environment, with situational 
awareness

- Independent decision-making, based in 
both DAI 

Specialised LLMs, util ised by GAI, 
provide value added capabilities for 
a network operator by appropriately 
tuning and optimising the performance 
of an autonomous system for zero-
touch automation. While LLMs provide 
these benefits for general use cases, 
such as realising improvements in the 

overall customer experience, it lacks the 
specificity for specific use cases, such as 
for a Radio Access Network (RAN) and 
related operations that align with related 
performance objectives. In such specific use 
cases that embody the complexities of a 
telecommunication system, the relevant LLM 
(e.g., SLM, MLM) requires to be specialised 
as well, where it contains highly accurate 
and requirements aligned language models, 
which are trained on curated and network-
specific private data, for sustaining the 
intended autonomous system behaviours. 
This requirement stems from a recognition 
of the following broad limitations of generic 
LLMs, in the context of specific uses, such as 
for the RAN:

• Sensitive subscriber data and network 
information, which cannot be sent out of 
the organisation for model training (e.g., 
generic LLM models may have implicit 
biases in the training data)

• Unique network settings and business 
objectives that are not available in the 
data sets used in the training of a generic 
LLM model (e.g., generic LLMs lack 
knowledge, specific to a given network 
deployment scenario)

• High cost of energy usage and network 
resources needed for uploading of huge 
amount of data (e.g., OAM data and log 
files)

A leveraging of foundation models (e.g., 
LLMs), by network operators, provides an 
initial model, obtained from the open-source 
community, which obviates the processing of 
large amounts of data from scratch, together 
with the high costs incurred as part of the 
model training. Generic LLMs are important 
since they have already been trained 
with data from standardised and general 
network architectures. Subsequently, these 
foundation models can be tuned through the 
use of customised network-specific data sets, 
to create a relevant suite of language models 
(e.g., SLM, MLM), for a variety of specific 
use cases. These newly trained language 
models can iteratively be trained and 
updated for both consistent and accurate 
behaviours, through prompt engineering. 
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These continually updated language models 
are fine-tuned and curated with operational 
network data to produce customised, 
internal language models to align with the 
specific requirements of a given network, 
which results in an overall advancement of 
the autonomous system behaviours. 

5.1.2  FOUNDATION MODELS

A foundation model or a base model is one 
that is pre-trained on exceptionally large 
and generic data sets, leveraging a variety 
of classical, deep learning, and Transfer 
Learning (TL) AI/ML techniques. The scale 
of their applicability results in emergent 
characteristics, where a clear understanding 
of how they work is limited. As a result of the 
scale of the applicability of the foundation 
models [15], homogenisation is incentivised, 
where advances in a limited set of foundation 
models are adapted across all other 
foundation models. While homogenisation 
has benefits, there is also a risk for inheriting 
anomalies.

The application of a foundation model serves 
as an initial fabric, which is subject to further 
tuning, in alignment with a given deployment 
data set, intents, and requirements, including 
network elements (e.g., routers, switches, 
base stations etc.), within an end-to-end 
autonomous framework. Multiple foundation 
models for the different segments of an 
end-to-end system (e.g., core network, edge 
network, radio network, user equipment etc.) 
could be applied as an initial fabric for further 
tuning and adaptation, through prompt 
engineering, to align with deployment 
specific data sets, and requirements, for 
improved specific language model (e.g., SLM, 
MLM) behaviours and accuracy.

5.1.2.1  UNDERSTANDING
FOUNDATION MODELS

• PRE-TRAINING

- Data and Training: Foundation models 
or base models are initially trained 
on large, diverse datasets where the 
knowledge and learnings are provided 
from dif ferent sources like device 

manuals, standards, release notes, 
administrative guides etc. This pre-
training phase allows the model to learn 
a wide range of features and patterns 
from the data provided from several 
such sources of documentation (public 
and generic) to deploy a network or part 
of a network in a generic way, which can 
include anything from vendor equipment, 
initial network conf iguration and 
monitoring aspects.

- Objective: The goal is to develop a 
model that has a general understanding 
of a generic NSP network before it's fine-
tuned for more specific tasks based on 
the associated business and operational 
objectives.

• FEATURES

- Generalisation: Foundation models 
embody general features that are 
not specific to any particular network 
deployment but are useful across a wide 
range of tasks to be tuned to the specific 
requirements of a given performed 
network deployment.

- Transfer Learning: Foundation models 
are designed for transfer learning, where 
knowledge gained during pre-training 
is transferred to a new task, with similar 
requirements, thereby reducing the 
associated training and computational 
resources, and hence enabling an 
improvement in the overall system 
efficiency.

- Examples:  Bidirec tional Encoder 
Representations from Transformers 
(BER T ) ,  Generat i ve  Pre - t ra ined 
Transformer (GPT), and XLNet[16] are 
examples of foundation models in Natural 
Language Processing (NLP). These models 
are pre-trained on a target dataset, which 
is generic in nature, and can be fine-tuned 
for tasks or actions related to specific use 
cases and requirements.
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5.1.3  MULTIFACETED LLM

The use of a multi-agent, multi-modal and 
multi-domain LLM enhances the behaviours 
of an autonomous system, through learned 
generalisations and understanding. This 
learning is leveraged to interpret and 
generate responses across multiple types of 
data inputs (e.g., text, images, graphs etc.), 
as well as across multiple domains, which 
include network segments, such as the 
core, transport, access, and edge, including 
capabilities, such as carrier aggregation and 
dual connectivity, for coverage and capacity 
enhancements. 

This type of model design approach 
combines the versatility of multiple LLM 
agents having diverse multi-modal learning 
with extensive applicability for multi-domain 
models, making it significant and valuable 
for a wide-array of applications and services, 
to suit diverse deployment scenarios, for 
realising autonomous system enhancements, 
in terms of effectiveness and efficiency.

5.1.3.1  MULTI-AGENT CAPABILITIES

 By leveraging the diverse capabilities 
and roles of individual agents within a 
multi-agent system, an autonomous 
system can tackle complex tasks through 
collaboration. With an optimisation 
of task allocation, robust reasoning is 
fostered through iterative queries and 
resolution, management of complex 
and layered context information, and an 
enhancement of memory management to 
support the intricate interactions within 
multi-agent systems. 

 Mult i -agent s ys tem would also 
enable their application to an existing 
autonomous system to provide insights 
on future development and application 
to distributed autonomous systems (e.g., 
cloud, heterogeneous access etc.) to 
suit evolving business and deployment 
objectives.

 The structure of multi-agent systems can 
be categorised into various types, based 
on the functionality of each agent and 
their associated interactions, which is 
characterised as follows:

• Equi-Level structure: In this type of 
agent structure, different agents operate 
at the same hierarchical level, where 
each agent has its role and strategy, but 
neither holds a hierarchical advantage 
over another. The agents in such systems 
can have the same, neutral, or opposing 
objectives. Agents with the same 
objectives collaborate towards a common 
goal without any centralised mediation. 
The emphasis is on collective decision-
making and shared responsibilities. With 
opposing objectives, the agents negotiate 
to reach a consensus collectively, or to 
achieve some conclusion or resolution.

• Hierarchical structure: In this type 
of agent structure, the agents have a 
hierarchy, where there is a leader agent 
with one or multiple followers. The role 
of the leader agent is to plan or guide, 
while the follower agents respond or 
execute based on the guidance from the 
leader agent. Hierarchical structures 
are prevalent in scenarios, where a 
centralised coordination is required. 
In this type of structure, agents make 
decisions in a sequential order, where 
the leader agent is the first to generate 
an output (e.g., instructions or workflow), 
and a follower agent takes subsequent 
action, as instructed by the leader agent.

• Hybrid structure: In this type of 
structure, both equi-level and hierarchical 
structures are accommodated in the 
same multi-agent system. As a whole 
the multi-agent system may be arranged 
in different combinations of equi-level 
or hierarchical structures to manage 
complex tasks. These tasks may be broken 
down into smaller tasks or workflows to 
form multi-agent subsystems, which may 
harness other agents to assist with these 
smaller tasks or workflows.

 
 5.1.3.2  MULTI-MODAL CAPABILITIES

 Multi-modal capabilities of models are 
associated with their ability to process 
and interpret information from various 
modalities or types of data. These 
modalities of data include text, real-time 
topological data, performance data, and 
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other types of sensory data. Models with 
multi-modal capabilities are designed 
to learn and understand complex 
relationships among different types of 
data, which enables them to capture a 
more comprehensive understanding and 
improved inferences from the data being 
analysed.

• Input processing: The model can 
process various types of inputs, including 
text, such as configuration files, log 
f iles, hardware/software data, fault 
management/performance management 
graphs. The models could include 
specialised components or sub-models, 
which are trained to extract features 
and understand the content within each 
modality or type of data being examined. 
For instance, it might use Convolutional 
Neural Networks (CNNs) for image 
analysis, Recurrent Neural Networks 
(RNNs) [17] or transformers for textual, 
device and network configuration data.

• Integration of modalities: The model 
integrates the information derived from 
the different modalities of data after 
processing the data. The processing 
could involve a combining of features 
or representations in a way that allows 
the model to leverage cross-modal data 
to enhance the model’s understanding 
of both the context and context of the 
data, leading to an improvement of 
interpretation and inference.

5.1.3.3  MULTI-DOMAIN CAPABILITIES

 A multi-domain model is designed to 
process and analyse large volumes 
of data that span different network 
segments (e.g., core, transport, radio, 
edge networks), which may also be 
associated with different administrative 
domains. Such multi-domain models 
harness LLMs that extract information, in 
terms of configurations, insights, trends in 
behaviours, and generate relevant reports 
or feedback, which could be utilised to 
take decisions, within an autonomous 
system. 

 The application of a multi-domain 
model is particularly useful for intent 
based network behaviours, as well 
as for deriving business intelligence, 
network prevision, and a correlation of 
observations, through a synthesis of 
information from diverse sources. The 
beneficial characteristics of a multi-
domain model include:

• Diverse domain knowledge: The model 
has improved inferencing characteristics, 
realised through the learning acquired 
from being trained on data pertaining to 
a wide range of domains. This extensive 
training enables it to understand and 
generate more predictable, accurate, and 
relevant outputs.

• Adaptability and contextualisation: 
The model can adapt its responses or 
content generation, based on domain-
specific content input. It is also versatile in 
terms of understanding diverse types of 
data inputs, while adapting and adjusting 
appropriately to domain-specif ic 
terminology, requirements, expectations, 
and context.

5.2  INTELLIGENT SYSTEM 
ADAPTABILITY

With a closer integration and processing at 
the edge, the cloud is enabled to manage 
larger and more complex tasks with broader 
scope. This collaborative workflow reduces 
latencies, saves energy, and gives end users 
a more seamless experience. It promotes a 
more powerful and efficient way to distribute 
GAI workloads, and the related paradigm 
is expected to continue to grow, together 
with an edge to cloud integration that will 
continue to evolve with more capabilities, 
to manage both complexity and scale, 
effectively and efficiently.

Prominent aspects be considered for an 
intelligent management and orchestration of 
a decentralised and distributed autonomous 
system, with self-CHOP characteristics 
include:
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• Automation: Automating repetitive and 
routine tasks, such as resource allocation, 
scaling, or maintenance operations.

• Adaptability: The ability to adjust to 
changing network conditions, user 
demands, or external factors without 
manual intervention.

• Predictive Analysis: Using historical data 
and real-time metrics to predict future 
network conditions, potential failures, or 
resource requirements.

• Healing: The ability to detect faults or 
failures and automatically take corrective 
actions to restore normal operations.

• Optimisation: Continuously analysing 
network performance and adjusting to 
ensure optimal efficiency, speed, and 
cost-effectiveness.

5.3  SYSTEM OPERATION 
OPTIMISATION

Autonomic principles that characterise 
an autonomous system are essential for 
enabling self-CHOP oriented automation, 
while also enabling the optimisation of end-
to-end system operations. The self-CHOP 
behaviours of an autonomous system are 
realised through relevant feedback control 
loops and AI/ML embedded functionality 
(e.g., cloud-native functions), distributed 
throughout the system, which promote 
both adaptable and predictable system 
behaviours, promoting the potential for an 
attractive, sustainable, and evolutionary 
direction for business, deployment, and 
operational transformation.

5.3.1  OPERATIONAL TRANSFORMATION

The benefits that accrue from an operational 
transformation that embodies autonomous 
self-CHOP automation, include:

• Efficiency: Zero-touch operations, 
facilitating system-wide responses 
that exceed human response limits, 
while enhancing system-wide resource 
utilisation, enabling humans to engage 

in creative and forward-looking system 
design.

• Scalability: Ef fective handling of 
increasing volumes of tasks and data, 
while managing complexity, enabling 
businesses to avoid a corresponding 
linear increase in costs. 

• Consistency: Uniform system-wide 
behaviours that align with programmed 
targets, while adapting to changes 
within the system and its operating 
environment, while avoiding/minimising 
behavioural variability, in terms of both 
quantitative and qualitative measures, in 
the absence of human intervention. 

• Error reduction: An avoidance 
minimisation of system-wide operational 
errors, which promote a reduction of 
human intervention induced operational 
errors.

• Proactive behaviour: Self-adaptive 
system operations to effectively detect 
and predict anomalies before system 
behaviours deteriorate or outages occur, 
such as through rerouting of network 
traffic, isolation of fault conditions, 
preservation of service experience, 
maximising system availability etc.

5.3.2  IMPLEMENTATION DIRECTIONS

The prominent implementation directions 
towards operational optimisation may 
be characterised broadly in terms of the 
following aspects:

• Objective definition: Establishment 
of specific operational tasks to be 
automated based on AI/ML models.

• Data collection: Gathering of relevant 
information for training AI/ML models, 
where the relevance and the quality of 
information underscores the quality of 
the AI/ML models for effectively realising 
system-wide self-CHOP automation 
behaviours.

• Model development: Training and 
validation of AI/ML models using the 
collected data, where the model could 
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be based on classification, regression, 
clustering etc., or be model-free, such 
as in reinforcement learning, which 
learns dynamically, based on specific 
behavioural targets.

• Integration: Embedding of AI/ML models 
within the operational system or the 
setting up of Application Programming 
Interface (API) (e.g., REST etc.) calls to 
AI/ML models hosted on a server or a 
cloud platform for enabling self-CHOP 
automation in the operational system.

• Scripting and workflow design: 
Leveraging of AI/ML model inferences 
from automated system operations, 
as inputs into designing scripts and 
workflows for both anomaly detection 
and prevision, which could also be 
automated through other AI/ML models, 
for automated lifecycle management (e.g., 
alerts, alarms etc.)

• Testing: The testing of AI/ML model 
driven actions realise expected system-
wide self-CHOP automation behaviours 
in a controlled environment, which 
is necessary to ensure expected AI/
ML model driven system operation 
behaviours in a production or a 
deployment environment.

• Deployment: The rolling out of self-
CHOP automated system operations 
in a deployment environment, while 
monitoring the alignment of system 
operations with expected behavioural 
targets.

• Monitoring: The self-CHOP automated 
system operations require continuous 
monitoring of system operations, with 
inferences provided through feedback 
loops between the system and its 
operating environment, for a continuous 
improvement and refinement of AI/ML 
models embedded within the system.

• Iteration: A continuous update/revision 
of the system embedded with AI/ML 
models, which are leveraged for self-
CHOP automation of system operations 
to adapt efficiently and effectively to 
changes in the operating environment or 
in the associated business model 

5.3.3  OTHER CONSIDERATIONS
A variety of other broad considerations 
in terms of leveraging self-CHOP system 
operation optimisation, realised through 
a system-wide application of autonomous 
system constructs, include the following:

• Transparency: Clarity and understanding 
for the stakeholders, in terms of the AI/ML 
model embedded system-wide self-CHOP 
automation, with respect to impacts on 
critical business operations.

• Fallback mechanisms: Design of 
mechanisms to manage situations, where 
AI/ML model embedded system wide 
operational behaviours deviate below 
configured confidence thresholds, with 
respect to expected behavioural targets

• Ethical aspects: An establishment of 
checks and balances, in terms of AI/
ML model embedded system operation 
behaviours and related decision-making 
processes, where there are potentially 
adverse impacts to human well-being, 
societal harmony, threat to life etc.

• Continuous learning: An integration 
of AI/ML model driven self-CHOP 
automation of system wide operations, 
while providing significant enhancements, 
through continuous learning, in terms 
of managing complexity, scalability, 
operational and resource utilisation 
ef f iciency. This necessitates the 
architecting of a well-crafted strategy that 
encompasses both technical and ethical 
implications, in a holistic and harmonious 
manner.
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To support and enhance the behaviours of 
an autonomous system, as the evolution of 
next-generation systems continue beyond 
5G Advanced, a few examples of cooperative 
technologies that embody DAI and GAI are 
considered. These cooperative technologies 
leverage access to higher levels of system-
wide programmability (e.g., cloud-native 
functions, IPv6 segment routing [18] etc.) 
and resource granularity (e.g., decentralised 
and distributed spectrum, networking, 
computing, and storage resources), across 
the system that is available for network 
slicing. These cooperative technologies 
serve as enabling capabilities for intelligent 
connectivity and services, across cyber 
and physical interfaces for continuing 
advancements in an autonomous system, 
towards higher levels of autonomy that 
characterise self-CHOP behaviours for zero-
touch automation.

6.1  NETWORK SLICING

A f lexible allocation of networking, 
computing, and storage resources is 
realised through network slicing, which is 
a foundational building block of a service-
based architecture that leverages virtualised 
functions, operating over a shared 
infrastructure. This functional building block 
facilitates the creation and instantiation 
of diverse and multiple logically isolated 
composition of networking, computing, and 
storage allocations, to suit the QoS and KPI 
demands of a variety of services.

The prominent benefits of network slicing 
include:

• Multiple network functions (e.g., xNF) 
sharing the same infrastructure for cost 
optimisation.

• Logical isolation of allocated resources, 
which in turn facilitates service isolation 
and adaptability to suit SLAs (Service 
Level Agreements).

06 COOPERATIVE  
TECHNOLOGIES

• Flexible and dynamic management, 
creation, modification, and deletion of 
networking, computing, and storage 
resources

With these system-wide benefits, network 
slicing is foundational in emerging next-
generation systems, from an end-to-end 
perspective. The networking, computing, 
and storage resource segments, associated 
with an end-to-end network slice, span the 
core, edge, transport, and radio networks, 
together with user equipment. These 
characteristics of a network slice enable the 
design of multiple logical networks, with 
distinct capabilities to suit the requirements 
of a given service, over a shared physical 
infrastructure. This attractive flexibility 
enabled by network slicing, promotes an 
enablement of a plurality of business models, 
deployment models, and Verticals to deliver 
different types of communication services 
(e.g., video streaming, IoT, URLLC etc.) to 
consumers, with diverse QoS demands.

The adaptability and the flexibility of 
network slicing to support the demands of 
emerging services follows a corresponding 
rise in complexity. This rise in complexity 
is an impediment in terms of realising the 
benefits of network slicing, which are pivotal 
for realising the enormous opportunities of 
return on investments, through a satisfaction 
of service evolution, service lifecycle, and 
rapid time-to-market demands. 

Cognit ive and autonomous system 
capabilities mitigate rising complexity, for the 
realisation of evolutionary connectivity and 
service opportunities, through system-wide 
automation, without human intervention. 
Autonomous network automation obviates 
the need for human intervention for 
system operation, while optimising system 
performance and operating expenses, 
together with resource allocation efficiency, 
energy efficiency, and a satisfaction of 
system and network KPIs and KVIs.
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The management and orchestration of end-
to-end network slices, and the lifecycle 
of network slice instances, including their 
preparation, commissioning, operation, and 
decommissioning, are critical for adequately 
supporting the demands of emerging 
services. The AI/ML embedded capabilities 
of cognition and self-CHOP, provide the 
foundations for customisable zero-touch 
automation that include the planning 
of resource capacity, and predicting the 
required network slice resources, in order to 
deliver dynamic and self-adaptive network 
slicing, while establishing a corresponding 
SLA assurance.

6.2  MACHINE LEARNING 
OPERATIONS (MLOPS) - 
STREAMLINING OF ML 
MODELS

MLOps process provides a valuable approach 
for the creation, and the maintenance of 
the quality of the ML models, throughout 

the lifecycle of ML model deployment 
and operation. The MLOps process is 
collaborative, in terms of connecting ML 
algorithms with business, and operations 
teams, to accelerate the development 
and production of ML models, through 
the practice of Continuous Integration/
Continuous Deployment/Continuous Training 
(CI/CD/CT). 

This helps with an effective lifecycle 
management of ML models to promote their 
applicability in an efficient, risk-reduced, 
and scalable manner. An alignment and 
compliance of ML models with policies 
and regulations, promotes an enhanced 
transparency, together with any drift checks, 
between expected and actual behaviours 
of an ML model, or in other words, the 
consistency or reproducibility of an ML 
model. The ML models are embedded within 
a larger software system, which facilitates 
both access to, and a monitoring of the ML 
models The MLOps process can be viewed as 
an extension of the DevOps practices for a 
rapid deployment f ML models [19]

Fig. 4: View of the MLOps process
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The MLOps process, consists of the following 
main functions:

• Project design: Includes requirements 
collection, scenario design, data usability 
checks etc.

• Model development: Includes data 
engineer ing , model engineer ing , 
evaluation, and verification etc.

• Model operation: Includes deployment, 
CI /CD/C T work f low, monitor ing , 
scheduling etc.

An ML project cycle evolves with the 
development of AI, and the emergence 
of MLOps in the industry to complete the 
ML project lifecycle. MLOps builds and 
maintains the ML pipelines, around the CI/
CD/CT in a full lifecycle, closed-loop system 
of the associated and connected pipelines. 
The ML project lifecycle, typically has four 
stages, consisting of requirements design, 
development, delivery, and operation, which 
are decomposed such as, requirements 
management, data engineering, model 
development, model delivery, and model 
operation, as follows:

• Requirements management:  
Feasibility analysis and articulation of 
technical requirements and solutions, 
based on business objectives and 
business requirements. 

• Data Engineering: Transformation of 
source data into usable data and storage 
in a suitable location for utilisation.

• Model development:  
Model development and optimisation in 
an experimental environment, through 
the process of model training, parameter 
tuning, evaluation, and selection. 

• Model delivery: The model is deployed 
to a relevant target environment, after 
the model is packaged with configuration, 
code, scripts, and generated deliverables.

• Model Operations: Provide monitoring 
and operational maintenance of model 
services in a production environment.

As the evolution of intelligent network 
automation progresses towards autonomous 
systems that embody AI/ML models and 
the associated algorithms, MLOps serves 
as an effective approach to enable the 
realisation of an autonomous system, 
including intelligent network management, 
intelligent operation, and intelligent network 
element management, This approach serves 
to improve the research and development 
efficiency of intelligent network applications 
through a systematic and automated lifecycle 
management of applications.

MLOps has been identif ied in the 
industry [20] as a prominent enabler 
of an autonomous system, which is 
pivotal for enabling the various aspects 
of an autonomous system for network 
automation, such as:

• Management of the research and 
development assets of autonomous 
network applications, including data, AI/
ML models, algorithms etc.

• Standardisation of the development 
process of AI/ML models with a specific 
focus on application demand analysis and 
to establish an effective application value 
analysis system.

• Realisation of a scalable (e.g., large 
scale) and automatic deployment of 
autonomous applications.

• Cont inuous moni tor ing of  the 
effectiveness of autonomous network 
applications to avoid the risk of AI/ML 
model degradation, caused by data drift, 
while supporting iterative training, and a 
continuous optimisation of the related AI/
ML models.

• Standardisation of the workflow of 
autonomous network applications from 
model development to model delivery 
and operation, while also improving the 
quality and efficiency of model delivery.
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6.3  APPLICABILITY  
OF GENERATIVE AI

The rising complexity and interdependence, 
across the various segments (e.g., 
applications, core network, transport 
network, radio network, and the user 
equipment) of an end-to-end system, 
demands an integration of GAI with 
the self-organising framework of an 
autonomous system. This would facilitate an 
augmentation of the autonomous system, in 
terms of flexible and dynamic deployment 
arrangements, with respect to an optimised 
utilisation of networking, computing, and 
storage resources.
With this contextual backdrop, it is evident 
that GAI is poised to play a pivotal role within 
the autonomous system for the realisation of 
a sustainable zero-touch end-to-end system, 
based on self-CHOP behaviours, hinging on a 
given intent ensemble. LLMs are an integral 
aspect of GAI, which focusses on system 
inferred text generation. GAI augments the 
capabilities of an autonomous system, to 
enable a compelling Quality of Experience 
(QoE) in an extensible, efficient, and scalable 
manner.
Ensemble hybrid models in GAI[21] involve 
a combination of multiple generative 
models (foundation models) or techniques 
to enhance the quality and integrity of the 
generated content output. Each foundation 
model, within an ensemble hybrid model in 
GAI may focus on a different aspect of the 
data or use different techniques. The hybrid 
aspect of a generative model consists of 
both a statistical analysis component and a 
symbolic or semantic component to interpret 
meaning and insight from an input data 
set. The ensemble aspect of a generative 
model consists of two or more learning 
models, such as regression models, neural 
networks etc., to improve the accuracy of 
predictions, based on an input data set. An 
ensemble hybrid model in GAI combines 
their constituent predictions through 
techniques like averaging, voting, or stacking 
to produce a final prediction, represented by 
the generated content output. Consequently, 
ensemble hybrid models in GAI are applicable 
within GAI to improve the integrity, quality, 
and diversity of the generated content, 
while avoiding or mitigating the impact of 
inaccurate inferences.

An augmentation of the autonomous 
system leverages the inferencing capability 
within GAI, through the use of LLMs, which 

describe the characteristics, context, and 
requirements of a given system, in terms of 
domain-specific knowledge, associated with 
the system[22]. This enables improvements 
in a dynamic adaptation of the autonomous 
system, as changes within the system 
and its operating environment occur, 
while preserving the service experience, 
optimisation of resource utilisation, and the 
expected end-to-end system KPI and KVI 
targets.
 
An example of GAI, leveraging a digital twin, 
which is a virtual representation of a physical 
system, for augmenting the behaviours of an 
autonomous system is depicted in Fig. 5 [37].

System-wide contextual learning is reflected 
in the associated LLM, to tune the system 
behaviors to align with the KPI and KVI 
objectives, over the lifecycle of the system. 
With these adaptive capabilities, the 
LLM complements autonomous system 
constructs, by facilitating agile, flexible, 
and adaptable workflows, to appropriately 
support the changing conditions (e.g., 
traffic load, resource constraints, anomaly 
detection, anomaly prevision etc.), within the 
system, and its operating environment. The 
LLM within an autonomous system, which 
may also leverage a digital twin, which serves 
at different and flexible levels of granularity, 
to facilitate and orchestrate the necessary 
functions required of a task or a workflow 
input, within an end-to-end system.

Large volumes of data associated with 
the system are leveraged for training 
a corresponding LLM, to understand 
and generate inferences from this data, 
based on the specific data patterns and 
relationships. This enables GAI to predict 
corresponding responses that can be utilised 
to advance autonomous system behaviours. 
In this context GAI and LLM, function in a 
complementary fashion to promote and 
advance the operation of an autonomous 
system, while adapting and optimising 
the end-to-end system behaviour. This is 
accomplished through a continuous update 
of the domain-specific knowledge, utilising 
the building blocks of AI/ML models subjected 
to the CI/CD/CT process. There are a variety 
of LLMs that leverage natural language 
processing techniques for describing the 
characteristics of a given system, such 
as through queries, response retrieval, 
sentiment evaluation, semantic analysis etc. 
Examples of LLMs include Midjourney [23]  
LaMDA [24], ChatGPT [25] etc.
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6.3.1  AUTONOMOUS SYSTEM 
ADVANCEMENT - LARGE LANGUAGE 
MODEL (LLM)

The self-CHOP attributes of an autonomous 
system hinge on the effectiveness and the 
fidelity of the underlying algorithms and the 
quality of available information, in concert 
with the relevant feedback control loops 
between the autonomous system and its 
operating environment to maintain system 
wide stability, under dynamic conditions. 
This implies the need for a choice-driven 
approach, where the relevant LLMs are 
aligned with specific considerations (e.g., 
optimum trade-off between energy savings 
versus QoE) and are domain-specific (e.g., 
telecommunications). Domain-specif ic 
models are based on generic foundation 
models, together with a continuous 
integration, deployment, and training of the 
underlying domain-specific models.

Among the many usage scenarios of LLMs, 
a prominent usage scenario involves 
a complementary use of APIs, such as 
intent-oriented APIs that enable network 
administrators to interrogate the network 
segments in an end-to-end system, with 
chatbots or plain text, obtain a corresponding 
response from the network segment. Audio 
assistants can also leverage LLMs to deliver 
rapid, precise, and complete answers to 
problems observed within the autonomous 
system, which self-adaptively corrects the 
anomaly and establishes system-wide 
equilibrium. Examples of interrogation 
include broad questions, such as:

• “Do I have a problem in my network?”

• “Can you show me graphically, where 
in the system on my 5G network is the 
downlink speed less than 155Mbps?”

• “What is the most adversely impacted 
coverage area, or KPI in my network?

A significant requirement for a sustainable 
self-adaptive equilibrium in an autonomous 
system is the definition and establishment 
of requisite open interfaces (e.g., 3GPP, TMF, 
CAMARA), since the machine-to-machine 
interactions serve the need to exploit, 
question, or get answers from the different 
LLMs, running in different network elements, 
and network segments (e.g., core, transport, 
edge, radio, OAM etc.)

The human interfaces provided by LLMs 
provide the network administrators with 
convenient interactive capabilities, for 
interacting with an autonomous system, 
which exploits the relevant technical 
documentation, whether it is vendor-specific 
or standardised. This organically promotes 
higher efficiencies, in terms of optimising 
system-wide operations.

6.3.2  NETWORK SERVICE  
PROVIDER (NSP) TUNED INTELLIGENCE

The autonomous system is required to 
adhere to the design requirements, and 
performance objectives that an NSP expects 
of the system, which would typically be 
multifaceted, with interdependencies and 
inter-relationships, across the objectives 
that underpin the system behaviour. As 

Fig. 5: Generative AI leveraging a digital twin for autonomous system augmentation
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complexity rises, the degree of sophistication 
required, within an autonomous system, to 
meet the emerging demands of continuing 
service evolution, the underlying AI/ML 
models are likely to incur gaps that may 
result in inadequacies that adversely impact 
autonomous system behaviour in terms of 
satisfying the intended objectives. These 
gaps may consist of an insufficient capture 
of system requirements, system analysis, or 
inadequate stakeholder information.

The gaps are likely to accrue with rising 
complexity, and dynamic shifts in system-
wide resource utilisation (e.g., changing 
traffic conditions, radio network conditions, 
service evolution, service usage demands 
etc.). GAI facilitates a promising approach 
to effectively bridge these gaps, through 
the use of training data, relevant for the 
domain, within which the autonomous 
system operates. GAI leverages specific LLMs 
relevant for a given domain to model the 
objectives of the domain with high fidelity, 
so that semantic errors [26] are avoided in 
the ML models for the autonomous system, 
created by the associated Generative AI 
process. An iterative feedback loop, based 
on the Monitor–Analyse–Plan–Execute over 
shared Knowledge (MAPE-K) [27], is an useful 
approach for the GAI process.

6.3.3  SITUATIONAL AWARENESS

A leveraging of GAI for situational awareness 
provides an operational team with a 
deeper and rapid understanding of the 
associated autonomous environment, for 
a timely resolution of any issues, which 
in turn facilitates an optimised system 
performance. This approach combines real-
time data analysis with advanced AI/ML 
capabilities, to yield actionable insights, while 
enhancing the overall operational efficiency 
of an autonomous system. The information 
associated with situational awareness 
consists of real-time monitoring and analysis 
of the end-to-end system metrics, together 
with the associated data logs to derive 
a comprehensive understanding of the 
current system state and recent history. GAI 
harnesses this process to develop useful 
and accurate insights to enhance the self-
adaptive behaviour of the autonomous 
system with improved fidelity. 

As an example, a brief description of a 
GAI process in this regard is delineated as 
follows:

• Current system health monitoring

Examples of queries, with respect to current 
system health monitoring, include:

 - “What is the health of wireless coverage 
in the access environment?

 - “What is the health of access experience 
for a given customer?

• Data collection

Examples of data collection, such as 
telemetry data, include:

 - Collection of real-time telemetry data 
from various sources such as system logs, 
performance metrics, error logs, and 
network traffic.

 - Continuous collection of data, using 
agents installed in each relevant 
environment (e.g., production, staging 
etc.).

• Generative AI (GenAI) processing 
Examples of GenAI processing, include:

> Natural Language Processing (NLP) 
engine

- Utilisation of NLP to understand 
user queries

- Parsing of a query to identify the 
environment, and the specific 
metrics of interest

> Data aggregation and analysis

- Aggregation of collected data from 
multiple sources (e.g., servers, 
databases, network devices).

- Application of machine learning 
models to analyse the data, 
identif ication of patterns and 
anomalies.
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> Health score calculation:

- Calculation of a composite health 
score based on metrics such as 
CPU usage, memory usage, disk I/O, 
network latency, error rates, and 
user experience data.

- Usage of statistical models and 
historical data to benchmark 
current performance relative to 
expected performance.

> Generative response:

- Generation of a detailed natural 
language response, summarising 
the health status.

• Inclusion of key metrics, current 
issues, potential risks, and suggested 
actions, together with historical 
Issue analysis

 Examples of historical issue analysis, 
include:

> Historical query examples:

- "What were issues with access on  
a specific date?"

- "Were there any agent framework 
issues on a specific date?"

> Data collection logs:

- Retrieval of archived logs, incident 
reports, and performance data for 
a specified date and environment.

- Utilisation of a centralised logging 
system (e.g., ELK stack, Splunk) to 
store historical data.

> GAI processing:

- NLP Engine:

- Understand the user query and 
extract the data associated with 
the environment, and specific 
components of interest.

> Data mining:

- Execution of data mining on 
historical logs to identify error 
patterns, incident reports, and 
system alerts.

- Use of clustering algorithms to 
group similar issues and identify 
common root causes.

> Incident correlation:

- Correlation of incidents across 
dif ferent logs and metrics to 
provide a comprehensive view of 
what happened.

- Identif ication of sequences of 
events that led to issues using 
causal inference techniques.

> Report generation:

- Generation of a detailed report 
that summarises the issues that 
occurred, including timelines, 
affected components, root causes, 
and resolutions.

- Provision of insights into recurring 
issues and recommendation for 
preventive measures.

• Agent framework monitoring

Examples of agent framework monitoring, 
within GAI, include:

>	 Specific	Query:

- "Any agent framework issues in a 
specific version?"

> Agent Diagnostics:

- Enab lement  of  d iagnos t ic 
capabilities in the environment.

- Collection of detailed diagnostic 
data from agents, including health 
status, performance metrics, and 
error logs.
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◊	 MONITORING OF GAI PROCESSES

Examples of a monitoring GAI processes, 
include:

» NLP engine:

- Parsing of the query to focus on an 
agent framework behaviour, within the 
specified development environment

» Generation of insights:

- Generation of insights based on the 
analysis, highlighting specific issues, 
their impacts, and possible causes.

- Recommendation of actions to resolve 
the identified issues and to improve 
the stability and performance of an 
agent framework.

» Diagnostics enablement:

- Enablement of diagnostic logging 
and monitoring for all relevant 
environments.

- Conf igurat ion of agents and 
moni tor ing tools  to co l lec t 
comprehensive data, including 
performance metrics, error logs, and 
system events.

- Implementation of a robust data 
collection and storage infrastructure 
to support real-time and historical 
analysis.

» Diagnostic data analysis:

- Analysis of diagnostic data to identify 
any performance issues, errors, or 
failures within the agent framework.

- Usage of anomaly detection algorithms 
to pinpoint unusual behaviours. 
or dev iat ions from expec ted 
performance.

6.3.4  AUTO-DISCOVERY ANALYSIS FOR 
CROSS-LAYER CORRELATION

Auto-discover y analysis involves an 
automated identification of relationship 
and dependencies between the different 
layers of an autonomous system. This 
process reveals an understanding of the 

interconnected and interdependent nature 
of the various resources of an autonomous 
system, while also identifying the root causes 
of anomalies that may span multiple layers of 
an autonomous system.

Using temporal correlations and domain 
knowledge, the symptoms and root 
causes can be effectively grouped. An 
exemplification of this process includes:

◊		TEMPORAL CORRELATION AND 
RELATIONSHIP ANALYSIS
Temporal correlation and relationship 
analysis, together with examples, are shown 
below:

» Temporal correlation:

- Temporal correlation refers to an 
identification of patterns or events that 
occur in a time sequence across different 
system layers. These correlations help in 
an understanding of how events in one 
layer affect another over time.

» Example of temporal correlation

 Scenario: Observation of a spike in the 
occurrence of database query times.

 Observation: The spike in query times is 
noted at 3:00 PM.

 Related Events:

 › At 2:55 PM,  
a sudden increase in network latency 
is observed.

 › At 2:50 PM,  
a high CPU usage alert is triggered on 
the application server.

 › At 2:45 PM,  
a deployment of a new application 
version is recorded.

» Relationship analysis:

- Analysis of relationships in terms of 
potential causal links between correlated 
events across different system layers.

» Example of relationship analysis

 Scenario: Analysis based on the example 
of a temporal correlation shown above.
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Inference:

› The congestion in the network could 
have led to increased network latency.

› The deployment of the new application 
version might have caused high CPU 
usage on the application server.

› The increased network latency might 
have caused the spike in application 
response time.

◊		DISCOVERING TOPOLOGY 
RELATIONSHIPS

This entails a discovery of topological 
re la t ionsh ips ,  w hich re vea ls  an 
understanding of the physical and logical 
connections between various system 
components based on correlation analysis.

» Example of discovering topology 
relationships

 Scenario: A microservices architecture 
with multiple topologically interconnected 
services.

 Topology Discovery:

 ›  Service A (front-end) depends on 
Service B (API).

 ›  Service B depends on Service C 
(database).

 ›  Temporal correlation analysis  
shows that an issue in Service C 
leads to failures in Service B and 
subsequently Service A.

 ›  This correlation helps in mapping 
out the dependencies and 
understanding the topology of the 
microservices.

6.3.4.1  AN ILLUSTRATIVE EXAMPLE
An illustrative example of an observed 
application downtime, with related analysis 
in terms of correlation, relationships, root 
cause, and discovery is shown below:

◊		TEMPORAL CORRELATION:
» Observation: Application downtime 

observed at 4:00 PM.

» Related events:

 › At 3:55 PM, a high memory usage 
alert on the web server.

 › At 3:50 PM, increased error rates on 
the API server.

 › At 3:45 PM, a database deadlock 
detected.

◊		LIKELY RELATIONSHIPS:
» Analysis:

› The database deadlock at 3:45 PM 
caused API server errors at 3:50 PM.

› The API server errors led to high 
memory usage on the web server at 
3:55 PM.

› The high memory usage resulted in 
application downtime at 4:00 PM.

◊		SYMPTOM GROUPING AND ROOT 
CAUSE:
» Grouped Symptoms:

› Database deadlock, API server errors, 
high memory usage, application 
downtime.

 Root Cause:

 › Identified as the database deadlock.

◊		TOPOLOGY RELATIONSHIPS:
» Discovery:

› The web server depends on the API 
server.

› The API server depends on the 
database.

› The discovered topology highlights 
the critical path and dependencies 
among components.

By leveraging auto-discovery analysis with 
temporal correlations, domain expertise, 
and policy enforcement, organisations can 
effectively identify and understand cross-
layer dependencies and root causes. This 
approach not only enhances situational 
awareness but also improves incident 
resolution and the system reliability of an 
autonomous system.
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6.4  SLA MANAGEMENT

SL As are a list of objectives and 
accountabilities contractually agreed upon 
between a service provider and an end-user 
covering the conditions by which a service is 
delivered over the life cycle of the contract, 
facilitated intelligently by an autonomous 
system for self-adaptation, to suit dynamic 
changes to an SLA. From a service provider 
perspective there are two types of SLAs:

• Service focused: SLAs are the defined 
delivery conditions negotiated between 
a service provider and a large group of 
customers, and so the same SLA applies 
for all customers in that group.

• Customer focused: SLAs are the defined 
delivery conditions negotiated between 
a service provider and a customer to 
address customer specific requirements. 
e.g., a trading company requiring unique 
service delivery conditions, such as 
extremely low latency etc. 

SLAs can cover a variety of measurable 
metrics such as:

• Technical: Latency, availability, uptime, 
bandwidth, jitter etc.

• Operational: Response time, restoration 
time or Mean Time To Repair (MTTR) etc.

Enterprises, public sector, healthcare, and 
others large customer segments rely heavily 
on a service provider’s ability to deliver 
services that conform to mutually agreed 
conditions and non-compliance with an SLA 
would incur agreed penalties. 

In simple terms, SLA management involves 
people, processes and systems that assist 
in ensuring that the services are delivered in 
compliance with agreed conditions stipulated 
in the service contract between the service 
provider and the customer and includes both 
proactive and reactive activities. 

• Proactive activities involve performance 
management capabilities that constantly 
monitor service performance. When 
service delivery conditions are at risk of 
being impacted adversely, such conditions 
trigger corrective actions and customer 
reporting.

• Reactive activities involve the customer 
reaching out to a helpdesk, the creation of 
a trouble ticket, the involvement of higher 
tier support entities when needed for root 
cause analysis, as well as a restoration of 
the service and customer reporting. 

6.4.1  AUTONOMOUS SLA MANAGEMENT

Appropriate AI/ML algorithms assist many 
aspects of SLA Management allowing a 
service provider to deliver higher quality 

Fig. 6: Autonomous SLA management
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services and differentiated offerings. Service 
providers typically have an SLA repository 
and a customer inventory system that 
provides a listing of customers and their 
corresponding SLA, associated with their 
service delivery contract.

During the life-cycle management of a service 
delivered from a service provider to the 
customer, requisite AI/ML models facilitate 
a cognitive, adaptive, and automated 
assistance in terms of correlating a service 
triggering event (outage or degradation) 
with a corresponding contractually agreed 
SLA between the service provider and the 
customer.
The following is an exemplification sequence 
of lifecycle management, based on 
autonomous SLA management, illustrated in 
Fig. 6:

• A triggering service event occurs with 
the associated data as input to an AI/ML 
trained analytics (e.g., NWDAF) engine.

• The analytics engine derives the relevant 
information from the provided data to 
query the SLA repository and customer 
inventory, to identify the customer and 
the contractually agreed service delivery 
conditions.

• This information serves as input for a 
cognitive AL/ML engine that determines 
an appropriate action that is necessary to 
update or restore the service back to its 
normal operating conditions. 

• The cognition AL/ML engine provides 
insights to the reporting system, such 
as Customer Relationship Management 
(CRM), which adds this information to 
its logs and reports for access by the 
customer. Tier 1 helpdesk also gets the 
same information so they can keep their 
conversation with the customer aligned 
with the information reported to the 
customer, either proactively or reactively.

6.5  AI/ML MODELS TO 
SUIT END-TO-END SYSTEM 
REQUIREMENTS

The cognitive capabilities within an 
autonomous system are realised through the 
use of appropriate embedded AI/ML models, 
operating with closed-loop feedback [1], The 
training of these AI/ML models occur through 
iterative process loops, until a convergence 
towards expected functional behaviours is 
established. The levels of cognition, realised 
in a closed-loop feedback arrangement, may 
be categorised in terms of the following:

• Closed-loop feedback system to meet a 
target objective based on a fixed data set, 
which is used to train the AI/ML models, 
implying limited adaptability.

• Closed-loop feedback system to meet 
a target objective, under dynamic 
conditions, where the AI/ML models 
are learning and training continuously, 
implying broad adaptability.

These are broad categories of closed-loop 
feedback arrangements are differentiated 
in terms of the degree of adaptability to 
dynamic conditions, which reflect the various 
layers of artificial intelligence as depicted in 
Fig. 7.

Autonomous systems leverage both the 
various layers of intelligence and self-CHOP 
adaptation of behaviours, through closed-
loop constructs, to satisfy system-wide 
objectives, under dynamic conditions, such 
as in connectivity and service, for widespread 
automation, without human mediation. 
The application, update and training of the 
models associated with layered intelligence, 
depicted in Fig. 7, include machine learning 
and deep learning intelligence models. 
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Machine learning models are updated 
through the process of continuous 
integration, continuous delivery, and 
continuous training for enhancing 
cognition, knowledge, and actions, based 
on dynamic data and experience, drawing 
from interdisciplinary fields (e.g., control 
system, neuroscience etc.). Deep learning 
is a category within machine learning that 
harnesses artificial neural networks, akin to 
a hierarchical arrangement of neurons in the 
human brain.

6.5.1  ELEMENTS OF COGNITION  
AND ADAPTABILITY

From a training perspective an AI/ML model 
is subjected to multiple cycles or epochs in 
a process loop, using a complete dataset 
[28]. The number of cycles or epochs for 
an expected AI/ML model behaviour is 
dependent on the size of a dataset and the 
required granularity or accuracy of the AI/ML 
model behaviour. In this context, the number 
of cycles or epochs of training to which an AI/
ML is subjected, is referred to as a “Process 
Loop”.

Dynamic cognition and adaptabilit y 
underscore the essence of an autonomous 
system. There are two building block 
primitives for AI/ML model verification and 
validation that require consideration:

• Model training through an iterative 
process loop for alignment with a target 
objective

• Model drift detection for any deviations in 
behaviour, during model operation

A two layer approach is considered, 
leveraging the primitives for AI/ML model 
verification and validation, where the layer 
1 process loop aspects are associated with a 
realisation of autonomous Network Function 
(NF) behaviours, in terms of the following:

• Configuration and re-configuration to 
satisfy the performance requirements, 
leveraging data inputs

• Presentation of the most relevant 
information to the OSS (Operations 
Support System)

• Execution of predictive maintenance 
tasks.

In Fig. 8, within the context of shared 
in f ras t r uc t ure  re s ource s ,  V i r t ua l 
Infrastructure Manager (VIM), and a 
collection of measurements, associated with 
an NF, the NF is continuously integrated, 
delivered, and trained to establish an 
intended autonomous behaviour (self-
CHOP), for a given system and its operating 
environment. This is accomplished through 
an NF awareness of the underlying 
infrastructure, and its neighbouring NFs.

Any number of NFs, each with its own 
Element Manager (EM), generate a unique 
collection of measurements, which are 
used to determine the associated KPI, for 
alignment with a target objective, where the 
layer 1 process may be labelled as a resource 
layer process for the AI/ML model within a 
given NF.

Fig. 8: Process loop for NF Al/ML model updates
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The layer 2 process loop leverages the layer 
1 process loop for a combined collection 
of measurements, obtained from the AI/
ML models embedded in each NF for 
incorporating service management, which 
consists of both service assurance and 
service orchestration, as depicted in Fig. 9. 
The microservices associated with a given 
service may span multiple NFs. There may 
be more than a single layer 2 process loop, 
for example one for each service. The layer 
2 process loop may be labelled as a service 
layer process for the AI/ML model within a 
given NF.

After an ML model, embedded in the NF, is 
verified, and validated through the distinct 
lifecycles of the layer 1 and layer 2 loop 
processes, the NF is ready to be utilised in a 
closed-loop architecture, for the realisation 
of autonomous behaviours that render 
zero-touch automation. The NFs participate 
in the composition of a service, where the 
alignment of the service, with the overall 
service objectives, is ensured by the service 
orchestrator, which orchestrates the 
behaviour of the NFs.

The adaptability of autonomous behaviours 
of a system or a service follows an “intent” 
to satisfy performance objectives, in terms 
of relevant KPIs, and a system or service 
behaviour. Service assurance and service 
orchestration deploy and manage the NFs, 
as well as the VIM, with an appropriate 
configuration of the underlying shared 
infrastructure, via resource orchestration.

6.5.2  AI/ML MODEL TRAINING ASPECTS

The various types of AI/ML models that 
underpin a virtual or cloud native NF (xNF), 
within an autonomous system, require to 
be continuously trained, integrated, and 
delivered, to adapt to dynamically changing 
conditions within the system and the 
environment within which it operates. 

The continuous cycle of training, integration, 
and delivery is especially significant for 
preserving the integrity and relevance of 
the xNFs and microservices, which in turn 
mitigates system performance degradation. 
This is a significant requirement for the 
system behaviours to sustain compliance 
with the intended performance objectives, 
and zero-touch automation, provided by the 
autonomous system.

The various AI/ML models and their 
application in the autonomous system 
that are relevant for managing system 
wide complexity to satisfy the diverse 
demands of both the system and services, 
as they continuously evolve, require to be 
streamlined in order to sustain the efficiency 
of managing the overall system complexity. 
The different and challenging aspects of ML 
model training may be broadly categorised in 
terms of the following:
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• Complex i t y :  T he decentra l ised , 
distributed, and disaggregated nature 
of next generation systems compounds 
the complexity associated with enabling 
automation. The levels of complexity 
increase with increasing levels of 
interdependence, across the constituents 
that compose these evolving systems. 
For example, automating tasks at the 
infrastructure layer, such as firmware/
driver updates, configurations etc., 
are likely to impact the virtualised 
management layer, and in turn impact the 
vNF/cNF (virtualised NF/cloud-native NF), 
which execute as part of the virtualised 
management layer. Furthermore, since 
emerging systems have various cloud-
native topologies (e.g., hybrid cloud etc.), 
which are realised through microservices, 
a change in a microservice in one part 
of the network (e.g., edge network) may 
have implications in another part of the 
network (e.g., core network). The scope of 
such types of impact hinges on the scope 
of a given service, across the system, 
where a complex service may contain a 
large number of microservices.

• Speed of change: The categories of 
evolving services, such as IoT, enhanced 
mobile broadband, URLLC etc., provided 
by a service provider, are rendered over 
shared, distributed, and interconnected 
networks. These arrangements of 
networks have impacts on workload 
automation, and on the utilisation of the 
underlying shared infrastructure. As the 
required speed of updates and adoption 
of these arrangements increases, to suit 
associated business and market changes, 
there is a proportional increase in the 
speed of updates and adoption of the 
embedded AI/ML models in the system, 
to preserve an intended system-wide 
behaviour.

• Stack utilisation: The utilisation of the 
stack, for example in a massive MIMO 
configuration, catering to a variety of 
patterns of usage, such as the number 
of users, link conditions, content types, 
specific service conditions etc., change 
over time, resulting in a potential 
degradation of the performance of the 
associated AI/ML models, in terms of 
realising sustainable automation. The rate 

of AI/ML model degradation over time, 
would be a function of the rate of stack 
utilisation changes in the system, which 
would then imply that an appropriate 
cadence is required for AI/ML model 
training, integration, and delivery.

A continuous re-training the embedded AI/
ML models, within the system, is required 
for sustainable automation. The re-training 
of these AI/ML models is far more elaborate, 
relative to a prediction of usage patterns 
or trends of utilisation. As a result, this re-
training process is both cost and resource 
intensive on-site, in terms of frequent AI/ML 
model training in a cloud environment.

Some considerations to ameliorate the 
barriers, such as cost and resource demands 
for a frequent training of AI/ML models, 
consist of the following:

• Separation of resource from service 
processes: While the layer 2 service 
processes contain the overarching 
ingredient for service automation, they 
rely on the efficacy of the underlying 
xNFs. The AI/ML models associated with 
these underlying xNFs get trained as 
part of the layer 1 resource processes, 
whereas the layer 2 processes incorporate 
the latest updates of the xNFs. This 
implies that the layer 1 resource process 
is effectively decoupled from the layer 2 
service process, thereby simplifying the 
overall tuning process for AI/ML model 
training, integration, and delivery, for a 
sustainable system-wide automation.

• Segmentation within the resource 
and service processes: For a further 
simplification of the layer 1 resource 
process and the layer 2 service process, 
it is advantageous to modularise each 
of these processes. For example, in the 
case of a layer 1 resource processes, 
the network types may be segmented in 
terms of macro-cells, small-cells, various 
types of radio-network disaggregation, 
edge network, transport network, core 
network, frequency bands, domains etc.), 
and layer 2 service processes.

Leveraging these approaches for continuously 
re-training the embedded AI/ML models 
enable an effective scaling for tuning the 



39

AI/ML models to sustain system-wide 
automation, while compliant with system-
wide performance objectives. The embedded 
AI/ML models that are in an acceptable state 
of behaviour and performance within the 
system are excluded from the re-training 
process, while others that are in a suboptimal 
state of behaviour and performance are 
re-trained as needed. Consequently, the 
efficiency of the processes for AI/ML model 
training, integration, and delivery is optimised. 
Some of the pre-requisite considerations for 
this approach consist of the following:

• KPIs: Measurements are required for an 
AI/ML model to ascertain whether the 
related automation performance has 
degraded to some inferred threshold that 
warrants re-training. This determination 
hinges on a breakeven analysis, where 
the performance of some constituents 
of the overall system may not have an 
immediate impact on the overall quality 
of automation. Other constituents in 
the overall system may have a more 
immediate or weighted impact on the 
overall quality of automation, which 
would be reflected by stricter KPIs for 
these constituents. The KPIs associated 
with the constituent of the system, are 
likely to shift and be adjusted, based on 
the introduction of diverse services to be 
supported by the system. These KPIs will 
both affect and influence the drift in the 
quality of automation, with respect to 
an intended quality of automation in the 
system.

• Drift detection: A drift in the quality of 
automation in the system, is described 
in terms of two levels, namely, a) AI/ML 
model drift, and b) Data drift. The former 
depends on the algorithm used, while the 
latter depends on the characteristics of the 
data. Both these levels of drift trigger the 
enforcement of AI/ML model training.

• Ser vice assurance alignment: An 
alignment of the KPIs, associated with 
the constituents of a system, in terms of 
how to modify them, weight them etc., 
with service assurance is required for 
an effective and efficient assurance of 
services, across related domains. This 
ensures that the KPIs are set properly in 
the system.

• Overall model governance: With the 
layered processes for re-training the AI/
ML models, within the constituents of 
an autonomous system, the re-training 
process of AI/ML models have an impact 
on the quality of automation. Hence, when 
an AI/ML model is trained, integrated, 
and delivered to the constituents within 
the system, the quality of automation 
requires to be monitored and measured. 
This is done by drift detection associated 
with the overall quality of automation, 
through a comparison with the intent 
associated with a supported service.

6.6  KEY PERFORMANCE 
INDICATOR (KPI) FOR 
NETWORK AUTOMATION
 
Autonomous system-oriented network 
automation leverages AI/ML algorithms, 
which hinge on data collection, model 
training, model inference, validation, 
and action. The performance of an 
autonomous system in this regard requires 
to be estimated for both end-to-end system 
advancement and optimisation, with respect 
to network automation.

A KPI performance indicator (Time T), which 
quantifies network automation, indicates 
the speed of the network to automatically 
adapt to its configuration and parameter 
setting dynamically to suit the objectives of 
the network and supported services, through 
continuous change. For example, changes in 
the system may occur as a result of adding/
removing network components, hardware/
software upgrade, traffic flow variability, 
configuration/routing updates, new service 
integration, network/devices failures etc.

This KPI should reflect the effectiveness 
of the optimisation decisions taken by the 
autonomous network management and 
operations, controllers, and orchestrators. 
The optimisation of network automation, 
realised through adaptive decision-making 
in the autonomous system, includes a 
preservation of the expected quality of 
network behaviors, and the quality of user 
experience.
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As a significant ingredient of autonomous 
systems, AI/ML model training time may 
or may not the part of this KPI. From an 
energy efficiency perspective AI/ML training 
would be a natural component of the KPI 
for network automation. Among the various 
facets of autonomous network automation, 
this KPI would include the performance 
quality of an autonomous system, in terms of 
data collection, inference, decision making, 
and implementation to achieve its objective 
of zero-touch automation.
 
For example, one of the components of 
this KPI, measured in terms of latencies, 
associated with different types of processing 
within an autonomous system, could be 
categorised as follows:

• Data collection duration (tc): The duration 
of the data collection process, where the 
data collected includes configuration and 
performance management data, such as 
traffic volume, mobility patterns, energy 
consumption, resource allocation etc., 
requires to be completed with low-latency 
and with sufficiently high reliability, for 
promoting quick decision-making that 
yields a highly responsive and adaptive 
autonomous system.

• Inference time (ti): The time duration for 
inferencing, which leverages the latest 
collection of data, for predictive decision-
making, within an autonomous system, 
with minimum latency, for a variety of 
appropriate actions, such as, network/
parameter change etc., should be made 
considering the following, among others: 
Operational and maintenance rules, 
policy control, network resource limits, 
and network KPI threshold values.

• Deployment time (td): The duration of the 
process of generating a reconfiguration 
instruction and a list of targeted network 
function services, deployment of a 
new configuration, and updating of the 
relevant AI/ML models and agents, with 
minimum latency

• Validation time (tv): The duration of the 
process of completing actions, within an 
autonomous system enabled network, 
as well as to complete the validation 
of network performance to meet pre-
determined targets after any change to 
re-establish an equilibrium or a stable 
state.

This KPI (T= tc + ti + td + tv) represents 
the effective responsiveness quality of 
an autonomous system, imbued with 
appropriate AI/ML models, to enable zero-
touch network automation. For instance, 
RAN energy efficiency features such as 
Sub-Frame Silence and Channel Silence will 
require much lower latencies for decision-
making and response, relative to energy 
savings features, such as Active Antenna Unit 
(AAU) shallow and deep dormancy [29]. 

Another component of this KPI, is measured 
in terms of the energy utilisation differential 
before and after the application of the 
appropriate AI/ML models, within an 
autonomous system for an optimisation 
of zero-touch network automation. The 
energy demand and consumption are 
associated with the corresponding utilisation 
of networking, computing, and storage 
functions within an autonomous system 
(core, edge, transport, radio, and user 
equipment), which includes the management 
overhead for any additional and frequent 
data collection, analysis, model training, 
inference, and execution.
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07 USE CASES
A plethora of emerging use cases 
are anticipated, through an effective 
management of complexity associated 
with evolutionary capabilities, through 
autonomous system capabilities, within 
next-generation systems (e.g., 5G advanced 
and beyond), A few examples that leverage 
the self-CHOP attributes of an autonomous 
system are examined.

7.1  CUSTOMER SERVICE

GAI is a particularly useful tool in the 
customer service domain because of its 
capability to mimic human-like interactions 
between help-seekers and computers. It 
can analyse real-time call discussions and 
customer data to provide prompts and 
resources to help agents or chatbot to 
resolve customer inquiries. It can resolve a 
wide range of customer inquiries, which used 
to be confined to a few boilerplate questions. 
GAI can also be harnessed to infer customer 
sentiments to reduce or avoid churn, provide 
personalised product recommendations, 
service adjustments, and promotional offers.

7.2  LIVE VIDEO    
BROADCASTING AND   
JOURNALISM

Network slicing serves as a foundational 
enabling capability within an autonomous 
system, which overlays a virtualised service-
based architectural framework, where 
monetisation is accomplished through the 
support for emerging usage scenarios, such 
as the live broadcasting of events, over a 5G 
Stand-Alone (5G SA) network configuration 
[30].

Live video broadcasting and journalism that 
conveys event related content in real-time is 
realisable for both amateurs and professional 
journalist subscribers, over an autonomous 
system with self-adaptive behaviours to 
optimise the service experience

On demand and dynamic network slicing, 
in concert with APIs, in a 5G and beyond 

standalone autonomous systems, enable a 
reliable transmission and reception of high-
definition video streams, without requiring 
cumbersome equipment (e.g., satellite vans). 
The separation of Quality of service On 
Demand (QoD) traffic from other types of 
data traffic is accomplished via a dedicated 
QoD network slice for high-definition video 
streams with the requisite Quality of Service 
(QoS).

A QoD network slice is created dynamically, 
while an eMBB slice is used for regular 5G 
subscribers. Within a QoD network slice 
the attributes of an associated QoS are 
characterised in terms of autonomous 
system specific QoS parameters (e.g., 5QI, 
in the case of a 5G system), to differentiate 
between Standard-Definition (SD) and the 
High-Definition (HD) videos). These directions 
enable the convenience and efficiency of live 
event reporting.

7.3  AUTOMATION USING  
EDGE AI/ML

Service providers aspire to render an 
enhanced customer experience, while being 
price-competitive and labour efficient. 
This drives a tremendous new opportunity 
for edge AI, leveraging insights from the 
enormous amount of data generated at the 
network edge.
 
Automation utilising AI/ML modalities 
at the network edge of an autonomous 
system, promotes a variety of use cases, 
which include frictionless checkout, fraud 
detection, theft prevention, and inventory 
management. High bandwidth and low 
latency network connections, coupled 
with AI/ML analytics, at a network edge 
are required to meet stringent use cases, 
performance requirements, as well as to 
deliver cost-effective solutions. Hybrid AI/
ML modalities with a balanced combination 
of on-premises analytics and aggregation, 
together with appropriate AI/ML model 
training in the cloud are significant directions 
for rendering an enhanced ser vice 
experience.
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7.4  CELL OPTIMISATION  
WITH AI/ML

Virtualisation of functions and resources in 
the RAN promotes an advanced granularity 
for resource allocation, which leads to 
opportunities for an optimisation of resource 
utilisation. This flexibility is beneficial for 
an autonomous system service assurance 
across the RAN segment, within an end-to-
end system.

In an emerging decentralised and distributed 
architecture of the RAN, each cell has its own 
underlying physical infrastructure, which is 
shared by a variety of NFs and workloads, 
where each workload renders one or more 
services provided by the RAN. With the 
dynamically changing traffic conditions, 
together with the services requested by 
the User Equipment (UE) entities (e.g., 
smart phones, fixed wireless modems, 
sensors, actuators, self-driving vehicles etc.) 
connected to a given cell or aggregation site, 
autonomous capabilities for an automated 
self-adaptation of the associated workloads 
are a pivotal requirement.

Autonomic functions imbued with AI/ML 
modalities, provide a disaggregated RAN 
with a cognitively optimised self-CHOP 
capabilities, to effectively support emerging 
and innovative services, with demanding 
QoS constraints (e.g., URLLC, immersive XR 
etc.) located at the edges of the network, to 
provide an adequate and sustainable service 
experience, in terms of the following broad 
objectives:

• Performance optimisation of workloads.

• Enhanced efficiency of autonomous 
usage and management of underlying 
resources.

The challenges are around a sharing of 
resources on the same platform, across all 
workloads, which are likely to have diverse 
and potentially conflicting requirements. 
Hence a multi-faceted approach as described 
in section 7.5.2 would be needed to 
harmonise the various AI/ML models.

7.5  NETWORK ENERGY   
SAVING

The variations in wireless traffic in terms of 
temporal and spatial changes, resulting from 
user mobility patterns, together with diverse 
patterns of usage, pertaining to unique styles 
of life and work, provide opportunities to 
selectively utilise sleep modes, across the 
network resources, to optimise the reduction 
of power consumption. Autonomic principles 
within an autonomous system provide 
the wherewithal to intelligently detect 
opportunities, and to select sleep modes for 
optimising system-wide energy consumption. 
For example, in the RAN segment, the 
resources that could be intelligently targeted 
to be turned off opportunistically, to 
optimise energy consumption at different 
levels of granularity such as symbol, carrier, 
transceiver, cell, site etc.

GAI appropriately tuned to deployment 
specif ic scenarios, through prompt 
engineering, provide enabling capabilities 
to optimise the trade-off between relevant 
KPIs, such as QoE and energy savings. This 
trade-off is accomplished through the use of 
GAI to learn the normal behaviour of a given 
network deployment scenario, to generate 
predictions of expected network traffic 
patterns in real-time, thereby triggering 
and ending sleep modes, across network 
resources more accurately and rapidly. 

GAI facilitates a detection of more instances 
of lower traffic or non-traffic windows, 
relative to a conventional algorithmic or 
rules-based prediction, since it utilises both 
LLMs and AI/ML to continuously infer from 
learned historical traffic patterns, specific 
to a given deployment scenario, as well as 
traffic patterns immediately preceding a 
predicted output or action, relevant to the 
latest state of the system and network.

7.6  RENEWABLE ENERGY  
INTEGRATION

An autonomous system can leverage various 
AI/ML modalities to manage and integrate 
renewable energy sources for use in a next-
generation system. Smart grid integration 
enables the utilisation of renewable energy 
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sources, which allows for an optimisation of 
energy usage from a mix of energy sources 
(e.g., solar, geothermal, fossil fuel, nuclear 
etc.).

A self-adaptive utilisation of different energy 
sources based on dynamic energy demands, 
enables an autonomous system to adjust 
the energy sources for the system to align 
periods of highly intensive energy demands 
to automatically select renewable energy 
sources. The availability of these choices 
enables an autonomous system to operate 
effectively and efficiently, while primarily 
harnessing renewable energy sources for 
reduced costs, and promoting environmental 
sustainability.

7.7  SUSTAINABLE    
HARDWARE

Within a nex t-generat ion net work 
infrastructure, an autonomous system 
provides an advancement of hardware 
sustainability through the use of AI/ML 
modalities for lifecycle management, which 
allows for an optimised utilisation of the 
network hardware. This is ensured through 
timely software upgrades, and recycling 

towards a circular economy, which reduces 
adverse environmental impacts.

Additionally, the different AI/ML modalities 
within an autonomous system can be 
used to evaluate and select energy-
efficient hardware for network upgrades 
and expansion, further contributing to 
sustainability and efficiency in network 
operations, while conforming to forward-
looking business and deployment objectives.

7.8  NETWORK PLANNING

Network planning and radio coverage are 
complex and necessitates a leveraging of 
specific planning algorithms. Traditional radio 
planning tools are used and developed based 
on the fundamental laws of physics and 
related equations (e.g. electromagnetic wave 
properties). The effectiveness of network 
planning is based on an understanding of 
the underlying characteristics of the related 
network configuration, in terms of wave 
propagation, wave lengths, wave reflection 
etc. The usage of GAI and a scenario-based 
large language model (e.g. a dedicated 
LLM model for radio network planning) is 
additionally based on end-user experience 
targets (e.g., latency, jitter, bandwidth etc.). 

Fig. 10: Digital twin representation of a physical autonomous system
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Leveraging crowdsourcing information can 
accelerate and complement the existing 
planning toolsets and processes. Additionally, 
LLMs can be used to continuously learn from 
previous and ongoing network deployments.
By connecting multiple complex AI/ML 
models across network planning and 
operations with LLMs, GAI can contribute 
significantly towards effective and efficient 
self-adaptive network planning. Constrained 
by parameters from various sources such as 
topology, network configuration, regulatory 
restrictions, performance requirements, 
spectrum allocation, budget allocation, 
and business objectives, GAI can generate 
optimal network planning, for maximising 
coverage, performance, and capacity.

7.9 DIRECTIONS TOWARDS  
THE DIGITAL TWIN

The replication of a physical entity or a 
subsystem, within an end-to-end next-
generation system, using a virtualised 
representation characterises the notion 
of a Digital Twin (DT) [31]. The benefits of 
leveraging a DT that represents a physical 
entity in the digital domain, enables the 
analysis and optimisation of the physical 
entity to advance the efficacy and integrity of 
the self-CHOP behaviours of a physical entity, 
imbued with autonomous characteristics for 
self-adaptive or zero-touch automation.
The behaviors of an autonomous system 
are simulated in a virtual representation 
with anomaly detection and prevision, 
together with a maintenance of expected 
KPI, through the use of AI/ML modalities 
within a corresponding DT. The interactions 
between the autonomous system and its 
DT occur over the relevant cyber-physical 
interfaces, where the virtual representation 
consists of cloud-native functions. This would 
allow the DT to be located with appropriate 
levels of topological proximity, to minimise 
latencies that could impair the required 
synchronisation between autonomous 
system and the corresponding DT. A logical 
representation is depicted below Fig. 10.

The use of a DT, through a virtual 
representation of data collected from 
multiple sources, as the system operates 
within a given environment, allows an 
NSP to detect potential anomalies, while 

also providing guidance for tuning the 
system towards intended performance 
and behavioural objectives. Consequently, 
the capabilities provided by a DT affords 
an effective management of the rising 
complexity and scale associated with en 
evolving autonomous system.

A system-wide DT leverages pertinent 
information collected from various sources 
associated with the system and its operating 
environment to establish a coordinated 
and holistic view of the entire network. 
The DT consisting of autonomous system 
constructs, imbued with discriminative and 
generative AI/ML modalities, enables a real-
time monitoring of network operations, 
and reveals predictive insights, in terms 
of impending maintenance requirements, 
or fault conditions. This enables NSPs to 
evaluate interesting what-if-scenarios for 
optimising the system-wide performance, 
resource util isation ef f iciency, and 
behaviours, to suit customisable deployment 
scenarios, together with a personalisable 
service experience.
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08 SECURITY AND 
PRIVACY
Security and privacy are integral aspects 
of an autonomous system. The different 
categories of AI/ML modalities (e.g., 
discriminative, and generative), together 
with the associated data sets require to 
be protected by zero-trust features [32]. 
Considerations for security and privacy 
are foundational, across these prominent 
categories of AI/ML modalities to ensure the 
integrity and alignment with anticipated, 
sustainable, and predictable behaviours 
of the autonomous system, through a 
continuing system-wide evolution. 

Security benefits accrue through an 
effective management of complexity in an 
autonomous system, as well as through 
higher levels of decentralisation and 
distribution that reduce the attack surface 
and minimise the scope of any adverse 
impact on system availability and reliability. 
A faster convergence of the autonomous 
system, through vulnerable network changes 
further immunises the system against threat 
scenarios.

The quality of system resilience to threat 
scenarios also includes considerations 
supported by Distributed Ledger Technology 
(DLT) [33], for a robust up or down scaling 
of system-wide resources and functions, 
while fulfilling pertinent SLA requirement to 
adequately fulfil the demands of rendered 
services. Encryption methods to satisfy 
privacy and confidentiality objectives, 
are among the essential considerations. 
Protection of system-wide investments 
and the Total Cost of Ownership (TCO), 
while harvesting the enormous benefits of 
system-wide automation are among the 
benefits of an autonomous system, aligned 
with business and deployment specific 
requirements.

Encryption of pertinent data, periodic audits, 
relevant access controls, and standards 
compliance, are pivotal for security and 
privacy of data being utilised by GAI in a 
variety of emerging systems and services. 

From this perspective the following are broad 
considerations that are aligned with ensuring 
both security and privacy:

• Ensuring the security and privacy of 
training data, used in GAI, for a variety of 
usage scenarios (e.g., healthcare, mobility, 
positioning, beamforming etc.)

• Use of LLMs, with Retrieval Augmented 
Generation (RAG) [34] for avoiding 
inaccuracies, and hallucinations in the 
outputs, to ensure the preservation of 
both security and privacy.

• Harnessing LLMs trained on large 
amounts threat scenarios, vulnerabilities, 
attack patterns, anomaly detection 
capabilities, threat insight extraction, 
and attack prediction [35] data, serve as 
an intelligent bastion of protection for 
security and privacy.

• Regulatory oversight to ensure compliance 
with security and privacy policies.

• Ethical guidelines are also a safeguard 
for LLMs to sustain the robustness of 
defences against threats that compromise 
security and privacy
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09 INDUSTRY GAPS, 
COOPERATION AND 
STANDARDISATION
With the continuing evolution of the 5G Advanced and beyond ecosystem  both discriminative 
(algorithmic) and generative (LLM oriented) modalities of AI/ML are essential for a corresponding 
advancement of autonomous system behaviours for managing complexity, scale, and 
sustainability. The necessary advancements in autonomous system behaviours for yielding 
zero-touch automation in the presence of rising complexity and scale of next-generation 
systems, present associated challenges, and gaps to be addressed in the industry. 

For example, some of the challenges pertain to satisfying diverse and emerging requirements, 
associated with various connectivity arrangements (e.g., optimising coverage and capacity), as 
well supporting higher levels service customisation, with different quality of service related 
resource allocation [36].

These challenges broadly consist of the diverse demands of evolving next-generation systems 
that are required to meet emerging market and industry demands (e.g., distributed, and 
ubiquitous connectivity, higher levels of service customisation, sophistication, and experience, 
improved resource, and energy utilisation etc.). The gaps in the industry and standardisation 
broadly consist of new and necessary capabilities, relative to previous generations, in terms of 
realising autonomous system behaviours, through an application of various arrangements of 
closed-loop feedback, imbued with appropriate AI/ML modalities. 

It is anticipated that the challenges and gaps can be addressed through continuing studies, 
research, cooperation, consensus and standardisation of selected interfaces and build-block 
procedures. This in turn is expected to promote interoperability and consistent autonomous 
system behaviours in a multi-vendor ecosystem of autonomous systems for widespread, zero-
touch network automation and autonomy.
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10  LIST  
OF ABBREVIATIONS

AI/ML Artificial Intelligence/Machine Learning

Autonomous 
(Autonomic)

Self-management characterized by self-CHOP (Configuring, Healing, 
Optimising, and Protecting) for cognitively adapting to environmental 
changes to suit a given behavioral objective or intention, realized through 
the principle of closed-loop feedback. (adjective)

Autonomous 
system

Any entity, network, system, or subsystem, characterized by autonomous 
or autonomic capabilities that render autonomy for the entity, implying 
independence of human intervention. (noun)

Automatic Attribute of an autonomous entity which is self-adaptive, or an entity that 
is not autonomous, while being programmatic with limited adaptability. 
(adjective)

Automation Process that embodies automatic behavior. (noun)

Autonomy Condition or state of being autonomous, where the associated entity 
operates independently. (noun)

BSS Business Support System

CI/CD/CT Continuous Integration/Continuous Delivery/Continuous Training

cNF Cloud Native Function

DAI Discriminative Artificial Intelligence, using conventional AI/ML methods 
(e.g., supervised, unsupervised, reinforcement learning, etc.)

DE Decision Element

DLT Distributed Ledger Technology

eMBB enhanced Mobile Broadband

FL Federated Learning

GAI Generative Artificial Intelligence, using generative AI/ML methods, 
consisting of LLMs that yield semantic inferencing capabilities for content 
generation

Intent This refers to an abstract, prescriptive, and adaptive high-level expression 
of policy for system-wide (end-to-end network) operation, based on 
autonomous systems.

IoT Internet of Things

KP Knowledge Plane

KPI Key Performance Indicator
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mIoT massive IoT

NF Network Function

NSP Network Service Provider. This refers to an operator of a next-generation 
(5G and beyond) network infrastructure that also owns the assets.

NWDAF Network Data Analytics Function

OAM Operation Administration and Maintenance

OSS Operations Support System

QoD Quality on Demand. This refers to on-demand management of bandwidth 
and latency for a connection.

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer, which embodies an architectural style for 
APIs, with the principles of platform independence, statelessness between 
a client and server, etc.

RL Reinforcement Learning

Self-CHOP Self-(Configuring, Healing, Optimising, and Protecting)

SDO Standards Development Organisation

SP Service Provider. This refers to a service providing entity in the context of 
a next-generation (5G and beyond) context (e.g., Verticals or other entities, 
including an NSP).

TCO Total Cost of Ownership

TL Transfer Learning

URLLC Ultra-Reliable Low-Latency Communications

vNF Virtual Network Function
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